JANZZ.jobs, 一个具备匿名工作申请程序的白标解决方案

有报告[1]、[2]显示,在申请流程的一开始就采用匿名化的程序,可以很大程度上减少偏见,显著提高机会平等。JANZZ.technology从2010年开始就围绕着匿名化程序搭建其解决方案的架构。其中,JANZZ.jobs是一个白标解决方案,旨在通过隐藏用户的个人资料,避免在申请过程的第一步出现偏见。我们创建了两个配置文件,将个人信息和工作相关信息分开。与工作相关的档案包含所有与匹配过程相关的信息,如职业、技能、软技能、教育、经验、入职时间、工资等。这个资料从一开始就可以访问。但包含姓名、性别、国籍、出生日期、婚姻状况、肖像照片等信息的个人档案只有在用户批准后才会共享,且不用于职位匹配。

除了这种匿名化的程序,JANZZ.jobs独有的语义匹配引擎,由JANZZ的关键技术驱动,根据术语的相似性,即同义词和其他关系–而不是单纯的关键词比较,来搜索和匹配职位和候选人。它还可以比较技能程度,通过上下文识别隐性职业术语,进行差距分析等。(要了解语义匹配,请查看我们之前的文章 JANZZ.technology – providing semantic technologies powered by ontology)

该白标解决方案目前正服务于全球多个公共就业服务机构。我们的客户选择JANZZ.jobs是因为

  • 该平台可通过加入最先进的模块化组件进行扩展,可满足不同规模的公共就业服务平台的各种要求。
  • 该平台的搭建过程快速、简单且具有成本效益,尤其是对于需要从头开始建立系统的公共服务平台来说,它是一个十分理想的解决方案。
  • 该解决方案通过全球众多公共就业服务平台多年的测试和建设,被证明是稳定、可靠、高效的。
  • JANZZ.jobs的SaaS解决方案使公共就业服务部门省去了运行一个庞大的IT部门的人力成本。相反,他们可以信任JANZZ的专业团队来管理相应数据库,并且可以自动受益于JANZZ.技术的更新和升级。

___________________________________________________________________________________

成功案例:一个中美洲的国家如何在短时间内建立起自己的公共求职系统?

由于不利的经济环境,我们的客户–一个位于中美洲的国家–正在与不断上升的失业率作斗争—失业人口中年轻人的占比尤为突出。我们与当地的一个项目达成合作,该项目旨在加强该国私营技术职业教育和培训(TVET)系统的,并使当地青年掌握成功进入劳动力市场所需的技能。我们的任务是要建立一个现代化的平台,汇集该国所有的人才和工作机会,并成功地将人和工作岗位进行匹配。

 在短短的90天内,JANZZ.job平台作为白标产品实施,现在以SaaS解决方案形式运营,帮助我们的客户:

  • 以快速、低成本的方式从零开始运行全国范围内的求职平台。
  • 通过为国家的人才和工作提供更透明和高效的匹配,促进其经济和社会的发展。
  • 协助地方教育机构调查和比较劳动力市场的需求和毕业生的情况,使其课程更好地适应市场的需要。
  • 提供多渠道信息,如当地职业技术教育与培训中心的信息、培训和奖学金、面试技巧和简历制作等,以提高用户在劳动力市场的机会。
  • 引入匿名申请匹配系统,以提升公民在申请工作时的平等机会。

_______________________________

与公共就业部门一样,许多中小型招聘公司同样面临着资源紧张的问题,他们急需一个自动化的解决方案来执行卓越的候选人搜索和匹配,以便将更多的精力集中在一小部分符合职位空缺的候选人身上。因此,我们也会收到招聘机构的请求。这些机构是特定行业的龙头招聘公司,专门为全球客户提供高级管理职位或技术人才。凭借JANZZ的创新技术和完全可定制的解决方案,JANZZ.job能为中小型招聘公司量身定制方案,帮助他们将业务提升到一个更高的水平。他们将从以下方面受益

  • 通过推出一个现代化的强大平台来促进业务的快速发展。
  • 完全个性化的品牌体验,包括商业标识、颜色和电子邮件模板。
  • 基于流量的成本生成模式,实现收益最大化。
  • 超过40种语言的实时工作匹配等。

  ___________________________________________________________________________________

成功案例:医疗保健、医疗技术和制药领域的一招聘机构寻求解决方案,以更好地支持其客户。

我们的客户之一是欧洲一家专门从事生命科学和医疗保健行业的招聘机构。它由一个不到10人的小团队组成。通常情况下,人才招聘经理会将50%的精力和时间用于搜索和分析简历,严重影响其团队的办事效率。他们认为,如果能重新分配部分时间,对少量的合格候选人进行深入面试,就能为客户提供更合适的候选人。因此,我们的客户想购买一个人才和职位匹配系统,以便快速有效地找到合适的技术人才。

通过使用JANZZ.jobs,我们的客户持续缩短了招聘经理用于处理简历的时间。同时,由于采用了匿名程序,既在很大程度上保护了客户的隐私,同时候选人质量也通过一下方式得到了提高:

  • 与传统的招聘平台相比,申请人和空缺职位之间的多语言技能匹配更加精确。
  • 提高所有申请人对申请被拒绝原因的透明度。
  • 强化了基于技能的职位匹配;同时空缺职位和联系方式只对合适的候选人可见。

_______________________________

想要了解更多关于JANZZ的匿名程序和打造专属于您的品牌招聘解决方案,请通过 sales@janzz.technology联系我们。

 

 

[1] Ines Böschen, Dr.Ramona Alt, Annabelle Krause, Dr. Ulf Rinne and Prof. Dr. Klaus F. Zimmermann. 2012. Pilot project ‘Depersonalised application procedures’. URL: https://www.antidiskriminierungsstelle.de/SharedDocs/Downloads/DE/publikationen/AnonymBewerbung/Kurzfassung-Abschlussbericht-anonym-kurz_englisch.pdf?__blob=publicationFile&v=4

[2] Eva Heinimann and Ralf Margreiter. 2008. Anonyme Bewerbung: Ein Zürcher Pilotprojekt für mehr Chancengleichheit und innovative Lehrlingsselektion. URL: https://www.panorama.ch/pdf/bba4814b.pdf

欧盟及其他区域间技术工人的自由流动将越发显得重要

您会修房子吗?如果不会,也许您可以开始考虑学习相关技能。因为到2030年,我们很有可能会出现建筑工人的严重短缺。现在就是您学习安装电线、木工、砌块、防水和管道等技能的机会。

根据瑞士建筑协会(Schweizerischer Baumeisterverband)2020年的报告[1],瑞士建筑业正面临着巨大的问题:愿意学习建筑行业的年轻人越来越少,而目前的许多技术工人即将退休。与2010年相比,2019年开始学砖工学徒的年轻人减少了40%。这会对整个行业产生至关重要的影响,因为大多数建筑工头、监理和施工经理都是从砖工队伍中招聘的。另一方面,在主要的建筑行业中,50岁以上的人群比例高达36%。这两者相加所产生的影响令人担忧。

近年来,由于数字化的发展,建筑行业对从业人员的专业资质水平要求大幅提升,使得现在典型的非技术工人几乎无人问津,造成了该行业劳动力技能供需缺口扩大。然而,要解决这样的技能短缺绝非易事。

人口结构趋势

出生率降低和预期寿命延长是瑞士,乃至绝大部分欧盟国家的两个主要人口趋势。人口老龄化和劳动年龄人口的减少加剧了劳动力市场的形势。根据欧盟统计局的数据[2],从2010年到2018年,劳动年龄人口占欧盟总人口的比例下降了2%以上,同期中位年龄增加了近3年,达到43.1岁。

除此之外,婴儿潮一代进入退休后的影响才刚刚开始显现。瑞士信贷(Credit Suisse)[3]的一项研究指出,未来10年,共有约110万人将达到退休年龄,年轻一代将无法填补由这批战后婴儿潮一代所空出的大量高技能工作岗位。同样的情况在其它中欧国家的研究中也被指出。

然而,多份报告显示,对于一些不具备类似人口结构形态的国家,如南非和印度,同样出现建筑业的技术工人短缺。显然,一个更普遍的因素正在造成国际上建筑业的技术短缺。

负面形象

全球的许多研究均表明,建筑业的形象是负面的,特别是在年轻人中。例如,南非国家商业就业周刊在一所高中进行的研究中,建筑业的职业在250个最没有吸引力的职业中排在第247位[4]。英国建筑业培训委员会(CITB)在2013年的数据[5]发现,在英国,建筑业作为职业选择的整体吸引力在14~19岁的青少年中已经下降到10人中只有4.2人,建筑、联合工种和技术人员联盟(UCATT)也报告说,2013年建筑学徒人数下降了14.6%。在2017年的一项调查中也再次证实了这一点。在美国,2017年的一项调查中,18-25岁的青年中只有3%的人希望从事建筑行业的工作 [6] 。

尽管需求量大的职业前景光明,但年轻人似乎就是无法摆脱这个行业的不良形象:低工资和工作保障、健康和安全问题、低质量的工作和艰苦的工作条件是年轻人对建筑业工作联想最多的方面,也让他们不敢从事这个行业。此外,数字化的兴起也滋生了一种错误的担忧,即建筑业的工作在未来会成为自动化的牺牲品。

的确,建筑业的一些职业有被自动化替代的危险,但从技术上讲,用机器人来完成某些工作是不可行的。即使是很多人认为最有可能实现自动化的体力工作,对机器人来说也太有挑战性了–尤其是在不可预测和变化的环境中的体力工作。

此外,当提到建筑业的职业时,人们大多只想到建筑工地,往往忽略了与子行业相关的职业,如房地产、采购、建筑设计或工程活动,这些职业享有较高的社会地位,对男女两性都有很大的吸引力。

对大学学历的推崇

在德国、奥地利和瑞士(DACH)实行的双轨制教育中,建筑业的大多数职业道路都是从职业培训和学徒开始的。作为这些国家的悠久传统,双轨制一直受到家长、青少年和整个社会的欢迎。近来,人们对大学学历的关注度越来越高,这对建筑行业的专业和其他技术工种提出了直接的挑战。

当大学毕业生面临职业选择时,吸引他们进入建筑工地已经为时过晚。研究表明,时机是激发人们对建筑业兴趣的关键,在小学阶段让学生参与进来,成功率最高。要做到这一点,需要整个行业生态共同努力,从根本上改变教育体系,促进行业与教育机构的深入合作。

技术工人不可或缺的自由流动

技术工人自由流动从长期和劳动力再生的角度看来都是可行的。然而,从中短期来看,国民经济—-特别是在工业化国家和正在发展工业化国家中—-将高度依赖于技术工人在地区乃至世界各国之间的流动,以缓解劳动力短缺问题。事实上,正如国际劳工组织[7]所指出的,移民工是建筑业等行业的重要技能和劳动力来源。从本质上讲,建筑业需要具有各种技能的灵活团队,基于移民工的流动性和灵活性的特点,他们往往严重依赖移民工人。因此,有助于人员自由流动的解决方案的需求将迅速增长。然而,为了确保工人真正的自由流动,从一开始就需要解决一个重要的问题:不同国家甚至地区之间的资质认可问题。

资质认可方面的挑战

在欧盟,《专业资格指令》(PQD)、《欧洲资格框架》(EQF)和《欧洲职业教育和培训学分制》(ECVET)是承认专业和学术资格以支持工人在欧洲各地流动的主要工具。然而,尽管做了大量的努力,如推出了欧洲技能、能力、资格和职业分类体系(ESCO),但各成员国之间的技能认可和匹配仍然非常令人失望,更不用说国际上了。跨越国界的技能比较带来了两个重大挑战:第一,许多国家都有自己的分类体系或分类法,每个国家都应当将其映射到一个跨国体系中。但并不是所有国家都已经做到了这一点。第二,并非所有的技能和资格都能轻易转化。例如,一个在英国完成18个月学徒期的木匠和一个在奥地利完成3年学徒期的木匠,尽管两者都完成了同一技术工种的标准化培训,但他们的技能会有所不同。

为了克服这些挑战,越来越多的投资和期望寄语在本体和语义技术解决方案上。目前,JANZZ的本体是职业数据领域最大的多语言百科知识表示。它不仅可以将职业术语中的诸多语言差异转化为通用词汇,更强大的是,通过人工专家的编排,它可以真正跨越国界和语言鸿沟,比较教育和资质的异同–从而为技术工人的真正自由流动做出有意义的贡献。

现在就联系我们,了解JANZZ的本体如何协助您进行劳动力的教育和资格的比较分析和匹配。

 

[1] Zahlen und Fakten 2020, Schweizerischer Baumeisterverband SBV

[2] European Commission, Improving the human capital basis, Analytical Report (March 2020)

[3] Credit Suisse, Fear of recession exaggerated (September 2019)

[4] Makhene, D., Thwala, W.: Skilled labour shortages in construction contractors: a literature review

[5] UK Construction: An Economic Analysis of the Sector (July 2013)

[6] Young Adults & the Construction Trades, NAHB Economics and Housing Policy Group

[7] Buckley et al.: Migrant work and employment in the construction sector, Geneva: ILO, 2016

为特定职业生成一个万能的技能档案——这事儿靠谱吗?

在撰写招聘信息时,许多招聘方都在绞尽脑汁表达和传递他们对某一职位最为看重的技能,这也导致在招聘信息中使用的词汇千差万别。如今,随着(X)AI自动化为招聘流程带来新的可能性,很多定位全球的招聘机构或人力资源部门都想知道,AI是否可以为他们提供这样一个快速的解决方案,即为特定职业生成一个万能的全球技能档案。由于许多招聘门户网站都是基于关键词匹配,而在全球劳动力市场参与者之间缺乏共同语言和词汇,因而使得求职者和招聘方因词汇不同而错失机会。这样的情况固然可惜,但基于AI的自动化系统又难以生成别具一格的招聘广告以帮助不同的招聘方吸引人才。要解决这个两难问题,可以通过采用语义技术。语义技术可以很好地将众多的语言差异转化为通用的词汇,极大地提高求职者与招聘方的匹配度。然而,虽然这种技术可以生成标准化的词汇,但这并不意味着可以生成标准化的招聘技能档案。接下来,我们将用数据证明这样的全球技能档案是否存在。在全球各地的招聘信息中,是否有足够的共同点来为某一职业定义标准的技能组合?甚至这事儿在同一个国家能办到吗?

JANZZ多年来分析了数以百万计的招聘信息来研究这些问题。为了说明我们的发现,让我们来探讨一下木匠和护士这两个经典职业的技能概况。我们从两个语言地区(英语和德语)的五个国家(美国,英国,瑞士,德国和奥地利)随机抽取了关于这两个职业各约250条招聘信息。我们的评估结果显示,即使是像护士这样受严格监管的职业,各个岗位所要求的技能也存在很大的差异。

技能可以定义工作。但谁来定义技能?一个国家的企业与另一个国家的同类企业所要找的人可能不一样,因为技能不仅取决于某个具体工作,还取决于文化或管理因素、教育制度和其他许多方面。事实上,在一个国家,可能需要几个具有不同技能的人去做一项工作,而在另一个国家,可能只需要一个人就能完全胜任。即使在同一地区,也可以看到技能状况的巨大差异,因为不同的企业在市场上的定位不同。这不仅体现在对专业技能的不同需求上,而且体现在所需的软技能上,这可能反映出公司的理念、团队的活力或客户的期望。

教育和工作经验的影响

让我们仔细看看木工。德国、奥地利和瑞士都实行双轨制教育,学生可以在给定的职业清单中选择一个职业接受学徒培训,这其中就包括木工。木工学徒培训中所教授的精准(硬)技能和理论,包括基础培训后可以选择的几个专业培训都有严格的规定和国家标准。凡是想接受木匠培训的人,在以上国家除了走职业培训这条路,几乎别无选择。英国最近实施了全面修订的学徒制结构,为越来越多的职业制定了国家标准,并正在制定鼓励雇主雇用学徒的措施。然而,尽管某些职业存在学徒制,但对想要从事这些事业的人来说,都有另一种途径,即通过大学教育,走大学这条路被广泛接受。此外,由于这一改革还很新,相关职业的大多从业者还没有完成学徒期。

美国在这方面处于另一端。学徒制确实存在,但美国没有一套统一的标准,在设计学徒计划时可以对所有雇主起到统一规范的作用。这使得雇主很难评估未来员工的培训情况,这可能是除缺乏这类培训的传统之外,学徒制在美国仍然没有像在欧洲那样普及的原因之一。这同样反映在人均学徒的数量上:在英国、德国和奥地利,目前约有2%的适龄劳动人口在接受学徒培训,在瑞士则接近于4%,是美国的10倍以上,美国的学徒比例还不到0.3% 。1)然而,这与工作岗位的技能要求有什么关系呢?我们观察到的一个方面是,在实行标准化培训的国家里,相比于工作经验,职业教育受到的重视程度要高得多。只要简单统计一下招聘信息中罗列的这些标准,就可以看出这一点。

教育和经验 – 木工

外环:木匠招聘信息中指定要求的百分比。

内圈:招聘信息中至少列出经验和学历一项标准的百分比。

中心:图表中心的数字是经验要求与学历要求的比例。因此,高于1的数字表示对经验的需求大于对学历的需求,反之,低于1的数字表示对经验的需求小于对学历的需求。

 

我们可以明显的看到,如果你完成了学徒期,你同时也具备了工作经验。而如果很少有人完成学徒期,那么雇主就会要求提供工作经验来代替。我们对护士的数据分析也证实了这一点。这个职业在这五个国家都受到了高度的监管,需要按照预先确定的国家标准进行培训(实践和理论),并有特定的可选专业。在所有五个国家中,与教育相比,对工作经验的需求明显较少(见下图)。我们还看到,在木匠的岗位招聘中,美国更多的是明确提及工具经验。这也可能是由于缺乏标准化的培训,因而在美国,给出了对工具方面的经验要求。

教育和经验 – 护士

外环:护士招聘信息中指定要求的百分比。

内环:招聘信息中至少列出经验和学历一项标准的百分比。

中心:图表中心的数字是经验要求与学历要求的比例。因此,高于1的数字表示对经验的需求大于对学历的需求,反之,低于1的数字表示对经验的需求小于对学历的需求。

 

接下来让我们看看关于木匠的工艺技能,即与该行业直接相关的硬技能,我们看到所有类别都存在明显差异。在英国和美国,对技能的要求分散在木工的各个领域,从一般的建筑和室内装修到其他行业的附加技能,而在德奥瑞,更看重的是木工的一般技能,很少提到具体技能。一个经过全面培训的木匠通常比在工作中学习的木匠具有更多样的技能,因此可以从事更广泛的工作,这一点毋庸置疑。相比之下,在培训不太规范的国家,木匠往往只能从事工作某一两项具体工作。值得注意的是,除了覆膜,在我们的数据中,美国和英国没有对制作技艺提出更多的需求。而这类知识对熟练的木工来说是非常特殊的,并且只有在五分之一的德奥瑞职位中明确提出。另一方面,我们看到美国和英国对某些行业的技能要求,在德奥瑞中几乎不存在。如果我们考虑到受过专业培训的木匠不太可能学到其他行业的技能,而在工作中学习的木匠容易掌握其他行业的相关技能,那么这种情况就很容易被解释了。

护士的情况同样如此:所有五个国家普遍很少提到专业技能,尤其是很少提出详细的具体技能,每个国家的招聘信息中只有4%到10%提出了详细的具体技能。这一技能类别的重点主要是专业和额外任务,这不是标准培训和/或经验的一部分。

区域差异

还有其他一些因素也会影响技能状况。例如,在英国,软技能在木工行业似乎并不重要:在英国,少于一半的招聘信息要求有任何软技能,而在美国,这一比例为76%,在德奥瑞,这一比例约为90%。在美国,对软技能要求最高的3项技能分别是体能、灵活性和能否加班、团队合作(由高到低)。相比之下,德奥瑞的前3项技能是团队合作、无需监督的工作和可靠性。由此可见,美国的雇主通常在寻找与德奥瑞完全不同的工人。

有趣的是,在护士软技能方面也存在显著差异:在德奥瑞,每一个招聘信息都要求至少有一项软技能,中位数为5项,而在美国和英国,只有70%和80%的招聘信息要求有软技能,中位数分别为1项(美国)和3项(英国)。在瑞士,排名前三的软技能是团队合作(48%)、责任心(46%)和在没有监督的情况下工作(44%)。在英国,排名前三的是沟通技巧、有爱心的人格和积极性–但要求要低得多(分别为40%、26%和26%)。同样,我们在不同国家看到了截然不同的标准。

另一个需要考虑的方面是监管事项和安全标准。在美国和英国,雇主明确要求求职者了解安全标准(OHSA和HSE/CSCS卡),而且相当一部分人希望应聘者拥有自己的工具。这在德奥瑞完全看不到,这可能是源于教育和监管的差异。同样,在美国的招聘信息中,有四分之三的招聘信息明确要求护士具备BLS或类似的认证,而在其他四个国家,这些认证是标准培训的一部分,因此没有提及。

企业/行业特有的差异

回到开篇提出的问题,假设我们还想创建一个标准的技能档案。最简单的策略是将至少一个招聘信息中的所有标准都罗列出来。使用我们对木匠的数据,这将生成一张103项要求的列表,而其中大部分要求与个别职位空缺毫无关联:平均而言,每个职位空缺列出7项技能要求,个别数据从2到21不等。对于护士来说,我们将有94项要求,平均每个职位有8项技能要求,范围在1到16之间。

另一个可以考虑的策略是寻找一个共同的分母,例如,找出每个国家至少25%的招聘信息所要求的所有技能。如上图数据所示,这样一来,我们对木匠的要求就只有两个:工作经验(时间长短不详)和驾照。大多数招聘者都会觉得这是不可接受的。在瑞士,完成学徒期是绝大多数工作岗位的必备条件,而在德国,大多数情况下驾照并不是一项要求。因此,这样的要求在一个国家会招致许多不合适的候选人,而在另一个国家则会导致候选人太少,错过许多机会。

按照同样的策略,对护士的要求也只得到两个:护理证书和工作经验(任何专业)。没有一项软技能被列出,而事实上人们非常强调软技能,至少有70%的招聘信息要求具备这类技能。此外,德国有四分之三的招聘信息不要求工作经验。同样,这将导致应聘者与职位空缺严重不匹配。

让我们对一个国家,比如说瑞士,采取25%的策略。我们对护士的标准技能要求如下。

  • 护理证书
  • 工作经验
  • 护理工作
  • 电脑技术
  • 负责任
  • 抗压
  • 沟通技巧
  • 同理心
  • 社交能力
  • 团队合作
  • 专业能力
  • 弹性和加班
  • 能独当一面

乍一看,这似乎可以接受。然而,近70%的瑞士招聘信息要求的是一般护理工作以外的专业技能,一半以上的招聘信息要求的是护士基础培训中没有的专业知识。这意味着,现在每一个单独的招聘信息都需要根据具体的职位空缺进行微调。

对于美国的木匠,我们也会遇到这样的问题。我们的策略会生成以下技能档案。

  • 工作经验
  • 工具的经验
  • 橱柜和家具
  • 门窗
  • 团队合作
  • 弹性和加班
  • 体能
  • 执行力
  • 数学技能
  • 安全实践知识
  • 驾照

如前所述,这乍一看似乎足够了。然而,专注于硬技能,一个熟练掌握橱柜和家具或门窗的工人可能没有干墙、屋顶木工或其他建筑结构的经验,因为这需要不同的技能组合。另外,有足足80%的招聘信息要求的是我们简介中所列的硬技能以外的技能,60%的招聘信息要求的是其他软技能。

同样,在奥地利的标准化技能档案中,唯一列出的硬技能是装配和安装。然而,许多木工工作根本不涉及装配和安装,比如在奥地利的招聘信息中,有十分之七的招聘信息需要制作技艺。在这个国家,制作技艺是在不同专业的学徒中学习的,因此,一般的装配工/安装工不会具备相关技能。

回到原点

以上可以说是基本的策略,而基于人工智能的复杂方法可能会带来稍好的结果。然而,从我们分析中发现的关键问题仍未解决:由于国家和地区的差异,以及不同行业甚至个别企业内部对职位的不同要求,存在着巨大的差异。我们的数据显示,因此,任何全球定义的核心特征都必须适应国家(如适应教育、监管和文化因素),然后适应行业(建筑业、制造业等),适应单个企业(如公司文化),最后适应单个职位。这就又回到了个人的工作岗位上。因此,一个标准的技能档案根本不存在。

下载 PDF

1) 根据经合组织和国家统计局的数字自行计算。

 

热烈欢迎 Jimena Rene Luna 出任我们新兴市场客户整合新副总裁

在此,我们隆重地宣布,Jimena Rene Luna将加入JANZZ.technology,并担任我们新兴市场客户整合新副总裁。她将负责拉丁美洲、欧洲、中东和非洲及东南亚的所有客户。

Jimena在为政府和国际组织提供技术政策、创造就业机会和加快经济发展等咨询方面有着丰富的经验。在10多年的职业生涯中,她与拉丁美洲、欧洲和非洲的团队一起设计和实施了数个重大的相关项目。在世界银行,她对劳动力市场进行了研究,并推出了创造就业机会的创新解决方案。此外,她还在白宫为美国首席信息官(CIO)工作,研究数字政策,以改善公民和企业与政府的互动方式,帮助缩小公私部门在技术和创新方面的差距。最近,她还在非洲从事促进数字经济和数字发展的项目。

Jimena对瑞士JANZZ.technology所从事的事业即为全球客户提供的工作匹配产品和数字解决方案充满热忱。她相信数字平台、大数据和人工智能将推动未来的经济。在世界面临数字化转型和劳动力市场变革之际,她为有机会与全球客户直接合作并为他们提供创造就业机会的数字化解决方案而兴奋不已。

Jimena将于5月15日加入我们的团队。她将从华盛顿特区开始工作,稍后再转到我们苏黎世总部。我们期待着看到Jimena将她的经验、热情和专业精神应用到我们的使命中,以更好地服务于我们的客户。

欢迎通过电子邮件  j.luna@janzz.technology与Jimena联系。她精通英语、法语和西班牙语并很乐意回答您的任何问题。

技能再造和提升能真正解决当今的技能短缺问题吗?

数字化,自动化和人工智能要求技能不断变化和升级,这对当今的就业市场构成了巨大威胁。但是,劳动力市场某些技能的缺失,并不能和技术进步直接画上等号,而是因为这些职业失去了吸引力。这尤其表现在空缺数量异常多或长时间空缺的职位。

 

根据瑞士技能短缺指数的解释,“如果职位空缺数量多于求职者数量,就存在技能短缺”。去年,德科集团(Adecco)将其瑞士就业市场指数中招聘广告的数量与职位空缺和就业市场统计信息系统(AVAM)中求职者注册人数进行了比较,从而得出了2019年瑞士技能短缺排名。

与往年一样,工程师再次成为2019年最受瑞士雇主青睐的职业,这包括结构工程师和电子工程师。技术职业,信托和IT专业紧随其后。该排名进一步指出,与2016年进行的首次评估相比,2019年瑞士技能短缺高出22%。 [1]

造成技能短缺的原因很多也很复杂。我们认为,由技术创新引起的对技能要求的快速变化是技能失配和短缺的最大原因之一。同样,瀚纳仕(Hays)2019/20年全球技能指数报告显示,自2012年该指数推出以来,今年人才的不匹配率达到最高,他们同样认为技术发展是这一结果的主要因素之一[2]。

对企业而言,由于担心人才短缺对其商业成功可能造成的威胁,他们积极地通过提高现有员工的技能,投资培训,鼓励终身学习和提高退休年龄等对策来为新技术做准备。毫无疑问,在整个职业生涯中不断提高技能水平将成为新常态,但这真的是解决技能短缺的关键吗?如果是这样,为什么如今情况看起来好像朝相反的方向发展呢?

另一份由瑞士在线就业门户网站和苏黎世应用科学大学(ZHAW)发布的报告或许为我们进一步了解瑞士就业市场提供了数据。该报告将100,000多个招聘广告与瑞士招聘门户网站上的点击次数进行了比较,从而以更直接的方式揭示了人们对特定职位的兴趣。

在瑞士德语区,与行政,人事,咨询,销售和客户服务,市场营销,传媒和执行董事会等职位招聘广告投放数量相比,其获得的兴趣(点击量)更多。而生产,电信,建筑或护理等领域的职位获得的兴趣(点击量)相对招聘广告投放数量更少。 [3] 这表明,在选择职业时,经济激励和社会认可对人们而言变得越来越重要。

去年,瑞士有6000多个专业护理职位缺口,这个数字与五年前相比翻了一番[4]。据瑞士医疗保健劳动力供求报告显示,直到2025年,护理人员毕业人数仅能满足需求的56%[5]。这显然已不仅仅关乎技能再造和提升,而是如何鼓励更多的人,尤其是年轻人去从事如今冷门的工种。证据表明,由于工作条件恶劣(例如,收入少,工作时间长,压力大等),很大一部分年轻人在学徒期后或仅仅加入工作几年后就转行了。这些职业还包括育儿,酒店,餐饮服务和技工。

今天,大家都在谈论自动化,数字化,人工智能,技能提升和再培训。我们必须记住,仍有许多工作不太可能被自动化,但对我们的日常生活至关重要。然而这些工作正在逐渐失去吸引力。对于政府和教育系统而言,如今采取行动提高认识并促进此类职业的发展尤为重要。正如《经合组织2019年就业展望》所写,“工作的未来掌握在我们手中,将在很大程度上取决于各国的政策决定。”

近十年来,JANZZ.technology一直在观察并与全球许多劳动力市场合作。我们的最新产品JANZZdashboard!创建透明,易于理解的劳动力市场差距分析。这将有助于政府即时了解劳动力市场信息,如哪些技能过剩,哪些技能需要重新培训。如要了解有关我们解决方案的更多信息,请立即写信至sales@janzz.technology

 

 

 

[1] Spring. 2019. Swiss skills shortage index 2019. URL: https://www.swissinfo.ch/resource/blob/45398900/860c466e7be6e615ba922c24c9edf5ee/adecco-study-data.pdf [21.01.2020]

[2] Rachel Muller-Heyndyk. 2019. New technology causing skills gaps and stagnant wages. URL : https://hrmagazine.co.uk/article-details/new-technology-causing-skills-gaps-and-stagnant-wages [21.01.2020]

[3] Robert Mayer. 2019. Die meisten Stelleninserate, die geringste Nachfrage. URL : https://www.tagesanzeiger.ch/wirtschaft/in-diesen-berufen-herrscht-ein-mangel-an-fachkraeften/story/18953945 [21.01.2020]

[4] Albert Steck. 2019. Offene Stellen auf Höchststand. URL: http://jobs.nzz.ch/news/6/arbeitswelt/artikel/421/offene-stellen-auf-hochststand [21.01.2020]

[5] Veronica DeVore. 2016. When caring for patients gets competitive. URL : https://www.swissinfo.ch/eng/showing-off-skills_when-caring-for-patients-gets-competitive/42524090 [21.01.2020]

 

 

 

 

 

 

JANZZ本体 – 赋能数据,实现智能应用

在过去的40年中,本体一直存在于人工智能(AI)的研究中。[1] 就像流行趋势总是来来去去一样,本体同样经历了起伏。本体在80年代被引入,并在90年代中期开始流行。在2000年机器学习(ML)出现之后,当时普遍的观点是,将来用计算机执行的任何任务(借助AI和ML)都可以用智能算法来解决。许多公司在这些算法上投入了大量资金,希望在人工智能方向取得新的突破。

随着AI和ML的飞速发展,特别是在卷积神经网络(CNN)出现之后,其核心技术-深度学习(DL)-在参数大小和计算复杂性方面迅猛发展。今天,一些最复杂的模型已达到数十亿参数的规模。 [2]

尽管如此,人们对当前主流的DL提出了担忧。以图像识别中的监督学习为例:用于训练AI模型的图像需要根据目标对象的位置和轮廓手动识别,以使模型能够在比较不同标记结果的数据后,找到图像之间的隐含模式特征。如果我们回想婴儿时代的学习方式,我们人类无需这种指导便可以轻松地识别和分类不同的对象。 [2]

尽管DL方法取得了长足的进步,能够从训练数据中提取知识。但是,这种知识无法被明确解释,因为所谓的“黑匣子”训练无法揭示模型内隐藏的复杂关系。当面对新问题时,当前的DL模型无法将其获得的知识有效地用于解决新挑战。 [2]

关于大数据及其相关的隐私问题同样值得担忧。此外,当前的DL方法基于海量数据,不适用于生成少量数据的行业,例如医学和人力资源中的某些领域。这种情况要求AI系统具有推理和判断的能力,目前只有在特定领域才能成功。 [3]

其实,在某些领域已经存在许多强大的本体,例如金融业业务本体(FIBO)以及用于医疗保健,地理或职业的众多本体。当前学界普遍认为,整合知识和DL是进一步扩大DL有效性的重要思路。因此,本体以及诸如知识图谱或知识表示之类的许多相似研究重新成为人们关注的焦点。

在2008年JANZZ.technology便开始构建其本体-JANZZon!,远远早于科技巨头Google发明并普及 “知识图谱”一词。 JANZZ本体一直由具有不同背景的领域专家构建(例如知识产权法,流体动力学,汽车维修,心脏直视手术或教育和职业系统等领域)。

如今,JANZZon!是职业数据领域中最大的多语言百科知识表示。其数据重点关注于工作,工作分类,软硬件技能,培训/资格等。其存储的节点和关系数超过3.5亿!

由数据驱动和专家咨询分类法集成,JANZZon!涵盖了Nesta的英国技能分类法,ESCO,O * Net,ISCO-08,GB / T 6556-2015,DISCO II等。目前,有9种语言(德语,英语,法语,意大利语,西班牙语,葡萄牙语,荷兰语,阿拉伯语和挪威语)全面涵盖职业,技能,专业,功能,教育等,我们正在努力于2020年实现同一水平的40种语言可供选择。

作为我们工作和技能匹配技术的核心,JANZZon!代表最底层的知识,其中所有实体都已在语义空间中进行了编码和向量化。因此,在搜索和匹配时,我们的技术可以真正理解一个概念及其语义含义,从而保证有意义的结果。

如果您想知道本体可以如何帮助您在人力资源和劳动力市场领域中增强数据能力并实现智能应用,请立即写信至 sales@janzz.technology

 

[1] ODSC. 2018. Where Ontologies End and Knowledge Graphs Begin. URL: https://medium.com/predict/where-ontologies-end-and-knowledge-graphs-begin-6fe0cdede1ed [2019.11.20]

[2] 李军. 2019. 深度学习: 新时代的炼金术. URL : https://www.ftchinese.com/story/001084827?page=1&archive [2019.11.20]

[3] 蔡芳芳. 2019. 清华自然语言处理科学家孙茂松:深度学习碰壁之后,我们还能做什么? URL: https://www.infoq.cn/article/OvhfhpPChTLpsMgrf43N [2019.11.20]

人工智能在人力资源管理中的潜力

毫无疑问,人工智能(AI)将改变世界。它正在深刻地变革着诸如制造业,金融科技,医疗保健,汽车等众多行业,并在经济上推动巨大价值。但是,相比财务和市场部门从业者在AI技术使用中取得的巨大成功,人力资源从业者(HR)常常感到困惑:为什么同样的技术到他们这里就不太管用了呢?

Prasanna Tambe,Peter Cappelli和Valery Yakubovich在他们的研究中回答了这个问题:“在构建基于AI的系统时,HR部门自身存在系统性和结构性差异,使得AI技术运用变得更加困难。” [1] 由于大数据和AI运用方式在人力资源和就业领域的质量和解释力有限,目前大数据和人工智仍然很难在这些领域发挥更大的作用。为了更好地理解这一点,我们需要了解人力资源管理(HRM)中基于数据科学的AI问题。

从数据科学层面看,人力资源AI实践面临三大挑战:首先,在衡量整个员工的生命周期中,缺乏一致和连贯的HR数据管理流程。例如,在确定“聘用哪位候选人”或选择“提拔哪位候选人”时,HR部门需要对决定性的标准和技能,以及候选人最终被录用或晋升的原因进行一致的检查和记录。

其二,人力资源管理数据生成受限。与市场营销、财务等能大量生成数据且易于采集的领域不同,人力资源管理中的数据采集在数量和质量上仍然面临着巨大的挑战。此外,在许多情况下,HRM的数据仍然是非结构化的,如纸质的、excel或pdf格式的,这是计算机难以处理的。

最后一个挑战来自与数据处理相关的道德问题。 由于人力资源决策的结果会对员工的职业生涯产生严重的影响,因此这当中的公平性和透明度极为重要。员工对仅仅基于某些数据驱动算法结果的接受度又如何? 特斯拉的Morgan Hampton曾提出过一个很好的观点:“招聘应尽可能自动化,录用应保持人性化(Recruitment should be automated as much as possible, hiring should remain human)。”

结合以上几点,为了在人力资源管理中发挥AI的最大功效,HR经理人需要从以下几点入手:第一,人力资源经理需要创建一个适应于数字化和AI技术的HR流程。当前,AI技术只是集成到单独的HR任务中,如在招聘和人才获取,薪资管理和绩效管理,如何在人力资源实践中形成一个数据生成闭环协助AI的发展?或许以员工为中心的数据生成和管理模式不失为一种新的尝试。

在具体环节上,人力资源经理通常只保留他们感兴趣的简历,而把那些淘汰的简历扔掉。这样导致了单一维度的分析和结论[1] 。所有正反面标准都应该进行数据收集,并最终进行评估,以促进大数据模型和人工智能在人力资源场景的发展。

此外,数据生成方式应该是可持续的。例如,有些人工智能应用程序可以预测哪些员工即将辞职,有些应用甚至从员工的社交媒体或电子邮件中跟踪数据点[2]。如果员工意识到这样一个系统,他们很可能会改变自己的行为,故意产生误导性的数据。

去年,亚马逊人工智能招聘工具对女性的偏见证明了机器学习可以模仿人类的态度。然而,性别并不是造成歧视的唯一原因。年龄、国籍或种族等其它因素也可能产生负面影响,使公司无法进行包容性和多样化的招聘。人力资源经理应仔细收集具有代表性的数据样本,并寻找可解释的人工智能解决方案。

当前,在整个人力资源实践中还未能生成一套数据采集标准。这意味着人力资源经理必须与公司内部的IT部门或外部的人工智能供应商合作,确定要跟踪哪些数据以及如何测量这些数据,以便在公司内建立人工智能的最佳实践。

在JANZZ.technology,我们相信收集和构建数据是创建智能数据的基石。我们的解析工具从纸张、excel或pdf中提取正确的实体,确保从一开始就进行公平的端到端数据处理。您想知道更多关于我们的解析器的信息吗?我们如何帮助您完成智能化升级的旅程?请马上与我们联系sales@janzz.technology

[1]Prasanna Tambe, Peter Cappellli and Valery Yakubovich. 2019. Artificial intelligence in human resources management: Challenges and a path forward. URL:https://www.researchgate.net/profile/Peter_Cappelli/publication/328798021_Artificial_Intelligence_in_Human_Resources_Management_Challenges_and_a_Path_Forward/links/5c5edc7f299bf1d14cb7dc5f/Artificial-Intelligence-in-Human-Resources-Management-Challenges-and-a-Path-Forward.pdf [2019.10.20]

[2] Samantha Mclaren. 2019. Here’s how IBM predicts 95% of its turnover using data. URL:https://business.linkedin.com/talent-solutions/blog/artificial-intelligence/2019/IBM-predicts-95-percent-of-turnover-using-AI-and-data[2019.10.20]

职场中的两性隔离

职场上男女隔离的部分原因是男女对特定职业的偏好和能力不同所造成的。传统上,女性集中从事如教学,护理和其它与护理相关的服务工种。相比而言,大多数男性活跃于所谓的“蓝领”工作,包括建筑,设备操作和维修。

此外,由于女性占主导地位的职业报酬较低,相比之下,女性更倾向于进入男性占主导的职业。这从#MeToo运动和妇女配额制等活动中便能窥见一斑。但是这样的进步在男性缺乏的职业中却止步不前,比如早期育儿工作。

早在1996年,欧盟委员会儿童关怀组织便设定了战略目标,意在到2020年将男性在儿童保育中的就业率提高到20%。如今距离截止日期只有几个月的时间,但是该领域男性的就业率却仍远远低于目标人数。

在德国,目前每100名学龄前儿童保育员中只有6名是男性。在英国和爱尔兰,这一数字甚至不到100人中的2人。挪威在两性平等问题上被认为是全球的表率,其比例最高,每100名男性中就有9名从事早期儿童保育工作。但是,这个比例同样也远低于20%的目标。在欧洲以外的地区情况相似,美国和澳大利亚从事幼儿保育工作的男性人数分别只占4%和2%。

有趣的是,在德国斯图加特的一个儿童保育中心(通常指四岁一下儿童的托管机构),情况却大不一样。这个中心雇佣的12个保育员中,有一半为男性;此外,该中心还不断地收到更多男性保育员的工作申请。为什么这个中心对男性育儿工作者如此具有吸引力呢?

该中心的创始人,同样从事过儿童保育的Nöth先生解释说,与传统的有固定小组的育儿中心不同,在他的中心孩子们有七种不同的活动小组,包括绘画、手工和体操。每一个小组活动都在一个单独的专用房间进行,孩子们每天都可以参加不同的小组活动。Nöth先生指出,这种运作方式为儿童保育员提供了创造性工作的机会,例如单独设计和开展活动。这种高度自主性的工作方式正是吸引男性保育员的原因之一。〔1〕

工作场所中的性别陈规定型观念仍然存在,比如早期育儿工作就应该是由女性从事。这样的观念给男性育儿工作人员造成了敌对的环境。此外,当大多数同事都是女性时,也增加了男性保育员工作中的孤立感,难以在工作中建立友情和发展社交活动,这可能会促使这个行业中为数不多的男性退出。这一点也得到了斯图加特这个儿童保育中心的男性育儿工作者的认同,他们认为在相对较多的男性同事环境中工作,会感觉到更舒服。

这样的特殊案例或许给我们提供了一些启示,来突破当前任然存在严重两性隔离的行业。例如,我们需要为传统上特定性别主导的角色创建新的工作职能。这一点已经在某些蓝领职业中体现出来了。随着新技术的出现,一些工种正由“体力活儿”向涉及机器运用的复杂职能转变,从而吸引了越来越多的女性加入该领域。

另外一点是要集中那少部分的男性或者女性。在工作场所中,如果某一性别处于极少数群体,他们很有可能会有不愉快的工作经历。统计数据表明,对于女性而言,在男性雇员超过90%的职业中,这种不愉快感急剧增加。

在挪威,教育部门积极引导男性进入某几个特定师范学院,从而集中男性学生在一起避免某一学院只有一个男性学生的情况。这样一些小小的举措鼓励了更多的男性学生申请师范专业,并为早期保育培养了更多男性人才。

近十年来,JANZZ.technology一直在观察全球劳动力市场并与参与多个不同劳动力市场的合作项目。我们独特的工作匹配解决方案仅使用对工作匹配真正重要的参数,如职能,技能,专长,经验等,避免了由年龄,性别或出身等因素带来的偏见。要了解有关我们解决方案的更多信息,请立即写信至 sales@janzz.technology

 

 

 

[1] Philipp Awounou. 2019. Kann Mann machen. URL: https://www.spiegel.de/karriere/kita-in-stuttgart-wo-das-halbe-personal-maennlich-ist-a-1281251.html [2019.10.03]

 

JANZZ.technology提供可解释人工智能(Explainable AI)

在过去的十年里,由于大量生成的数据和不断增强的计算能力,机器学习(Machine Learning),特别是深度学习系统,取得了前所未有的突破。然而,盲目追求机器学习的成功,造成了我们过度容忍人工智能(AI)应用开发的过程。如今,越来越多的自治系统(autonomous system)导致机器缺乏解释其行为的能力。

由于大多数人工智能技术都是由私营公司开发,这些公司为了自身利益会确保他们的数据处理是保密的。此外,许多公司在人工智能技术中使用复杂的神经网络,他们甚至无法解释某些结果是如何得出的。

当然,如果这样的系统错误地预测了某些消费行为,那么后果可能不大。然而,如果这样的误判发生在自主车辆、医疗诊断、政策决策或者我们的工作匹配中,那又会怎样呢?相信在这样的情况下,我们很难盲目地信赖一个人工智能系统的决策过程。

今年年初,经济合作与发展组织(经合组织)提出了人工智能原则,旨在促进创新和可信赖的人工智能。在经合组织提出的五大原则中,其中一个原则更是明确指出,“围绕人工智能系统应该有透明度和负责任的披露,以确保人们了解基于人工智能的结果,并能够挑战他们。”[1]

可解释人工智能(Explainable AI)作为解决人工智能系统中“黑箱”决策问题的一种手段,最近在机器学习领域越来越多的被提及。如上所述,目前用于机器学习的大多数算法在如何和为什么做出决策方面都无法被人类理解。因此,很难诊断这些决策是否存在错误和偏见。这其中尤其包括深度学习神经网络方法的大多数流行算法。[2]

因此,包括经合组织在内的许多监管方都不断敦促企业增加可解释人工智能。在欧洲生效的《通用数据保护条例》规定,欧盟人民有权对任何算法决定进行“人工审查”。在美国,保险法促使公司对他们的决定做出详细说明,比如为什么拒绝为某一人群投保,或者为什么只向少数人群收取更高的保费。[3]

然而,当前的可解释人工智能也存在两个主要亟待解决的问题。首先,正确界定可解释人工智能的概念是一个挑战。用户应该意识到他们可以获取的关于人工智能应用知识的局限性。因为,如果企业别无选择,必须提供详细的解释,知识产权作为一个独特的卖点(Unique Selling Proposition)将会消失。[4]

第二个问题是绩效性和可解释性之间的权衡。我们是否需要对某些机器任务进行标准化,并对某些行业进行监管,迫使他们寻求透明的人工智能解决方案?即使这意味着扼杀了这些行业的开发潜力?

在JANZZ.technology,我们致力于向用户解释我们匹配候选人和职位的过程。我们独特的匹配软件抛开诸如性别、年龄或国籍等次要参数,使用真正重要的数据来寻找完美的候选人,比如技能、教育/培训、专业、经验等。

我们独特的匹配系统不单单给出一个最终匹配值,而是分解了所有评判标准,如功能、技能、语言和入职时间等。让用户对匹配结果有更充分的理解,并为员工再培训和技能提升提供参照。您想知道更多关于JANZZ.technology如何应用可解释人工智能解决方案的吗?请立即写信至 sales@janzz.technology

 

[1] OECD. 2019. OECD Principles on AI. URL :https://www.oecd.org/going-digital/ai/principles/ [2019.9.17].

[2] Ron Schmelzer. 2019. Understanding Explainable AI. URL: https://www.forbes.com/sites/cognitiveworld/2019/07/23/understanding-explainable-ai/#6b4882fa7c9e[2019.9.17].

[3] Jeremy Kahn. 2018. Artificial Intelligence Has Some Explaining to Do. URL: https://www.bloomberg.com/news/articles/2018-12-12/artificial-intelligence-has-some-explaining-to-do[2019.9.17].

[4] Rudina Seseri. 2018. The problem with ‘explainable AI’. URL: https://techcrunch.com/2018/06/14/the-problem-with-explainable-ai/[2019.9.17].

 

 

 

 

在中国工业中心城市重庆,智能技术升级正在全面展开

第二届中国国际智能产业博览会(智博会)于2019年8月26日至29日在中国重庆成功举办。中华人民共和国主席习近平向智博会发来了贺信。中国最具新闻价值的商界领袖齐聚重庆,分享了他们对智能技术的看法,并为智能产业提出了建议。

这其中包括了阿里巴巴集团创始人马云、腾讯董事长兼CEO马化腾、百度联合创始人、董事长兼CEO李彦宏、联想集团董事长兼CEO杨元庆等。去年,重庆被宣布成为中国国际智能产业博览会这一高标准活动的永久会址。然而,这座城市凭借什么成为中国智能和智能产业的先锋呢?

中国的战略性发展

20世纪末21世纪初期,中国共产党中央委员会,国务院贯彻邓小平关于中国现代化建设“两个大局”思想做出了实施西部发开发的战略。作为西部唯一的直辖市,重庆迎来了历史性发展机遇,加快了直辖市建设的步伐。

2013年,中国政府将“一带一路倡议”作为一项全球战略,重庆再次迎来了发展的黄金机遇。处在“丝绸之路经济带”和“长江经济带”的交汇处,“一带一路”战略加速了重庆向东向西的开放。在踏上发展快车实现了经济高速增长后,重庆经济遭遇到下行压力。为了新一轮的增长,2018年以来,重庆实施了以大数据智能化为引领的创新驱动发展战略行动计划。

完整的产业链

重庆做出这一选择显然是经过深思熟虑的。重庆在中国信息化与工业化融合中发挥了重要作用。它是中国西部老工业基地之一,也是重要的工业制造基地。此外,重庆的工业门类齐全,除了传统的制造业以外,还包括电子信息和通信行业。

它是中国汽车制造大城之一,是长安福特,力帆汽车等大型汽车制造商的所在地,全球每三台笔记本电脑就一台产自重庆。良好的工业基础,为未来的智能制造或智能创造,包括人工智能打下了一个好的基础。

成熟的数字平台

经过几年的努力,重庆市已经建成了全市统一的政务信息资源共享交换平台。(国家-市-区)三级政府信息资源共享系统将国家平台和38个区平台连接在一起。同时,重庆率先完成直辖市数据共享,实现部门信息孤岛的跨越,加快了数据聚合。去年,重庆已实现80个部门200多个政府服务、城市规划、城市治理等应用。

完善的网络基础设施

重庆是中国通信网络架构中10个一级节点之一,这极大地提升了重庆作为西部互联网枢纽的地位和增强了重庆网络基础设施的支撑能力。重庆也成为西部地区三大运营商(移动、联通、电信)共同启动5G试点的两大城市之一。目前,重庆移动已开通两个5G基站。今年内,计划在主城区建设和开通50个5G基站。

本届智博会发布了人工智能、大数据、自动驾驶汽车、无人机、虚拟技术等领域的多项最新技术、产品和应用。参展企业包括阿里巴巴、谷歌、浪潮、华为和百度等数家重量级企业。在来自28个国家和地区的843家企业中,JANZZ.technology也有幸成为其中一员参加了今年重庆智博会。我们相信,未来中国将成为智能技术领域的领军者,我们希望能寻找到潜在的中国合作伙伴,帮助我们打开通往中国市场的大门。我们仍然可以回忆起在智博会期间遇到的无数孩童,透过他们好奇的眼睛,我们看到了这座城市智慧的未来。