JANZZ, nombrado proveedor de muestras por su exclusiva ontología en el ciclo de sobreexpectación de Gartner para el HCM Technologies en 2020

Nos complace anunciar que Gartner ha reconocido a JANZZ.technology como un proveedor de muestras de ontologías de habilidades en el ciclo de sobreexpectación para la GCH, Gestión del Capital Humano (HCM por sus siglas en inglés) en 2020. Este reconocimiento consolida el enfoque innovador de nuestras soluciones para empresas y servicios de empleo público basado en nuestra exclusiva ontología de empleo y habilidades multilingües.

¿Qué es el ciclo de sobreexpectación de Gartner?

«Los ciclos de sobreexpectación de Gartner» presentan una representación gráfica de la madurez y adopción de tecnologías y aplicaciones, así como de la relevancia potencial para la resolución de problemas empresariales y la explotación de nuevas oportunidades. La metodología de ciclos de sobreexpectación de Gartner ofrece una visión de cómo una tecnología o aplicación evolucionará a lo largo del tiempo, proporcionando una sólida fuente de información para gestionar su desarrollo en el contexto de los objetivos específicos de cada negocio.[1]

JANZZ named as a Sample Vendor for Skills Ontologies in Gartner Hype Cycle for HCM Tech 2020

Las ontologías de habilidades, calificadas como altamente beneficiosas para la GCH, se encuentran actualmente en la primera de las cinco etapas del Ciclo de sobreexpectación de Gartner, el desencadenante de la innovación. Gartner describe esta etapa como aquella en la que «un avance tecnológico potencial pone en marcha las cosas. Las primeras historias de demostración conceptual y el interés de los medios desencadenan una publicidad significativa. A menudo se carece de productos que puedan aprovecharse y la viabilidad comercial no está probada». Empezamos a desarrollar nuestras habilidades ontológicas hace más de una década, en 2009. Actualmente es la ontología de habilidades multilingües más completa del mundo y lo ha demostrado repetidamente en los últimos años, al haberse aplicado con éxito en múltiples sistemas de cualquier escala.

¿Qué es una ontología de habilidades?

Una ontología de habilidades organiza grandes conjuntos de conceptos relativos a capacidades, competencias, conocimientos y experiencia, así como las relaciones entre ellos en una estructura de datos. Proporciona una base para las aplicaciones de la IA en áreas como la adquisición de talentos, el desarrollo de talentos y la planificación de la plantilla. Muchos proveedores afirman que tienen una ontología cuando en realidad, solo tienen una taxonomía o una biblioteca.[2] En JANZZ, tenemos una verdadera ontología, JANZZon!. Pero no solo abarca habilidades, si no que también es una ontología de empleo. Esto quiere decir que también contiene ocupaciones, títulos de trabajo, experiencia laboral, formación y titulaciones, industrias y mucho más. Hacer matching solo entre las habilidades, sin tener en cuenta otra información como las ocupaciones o funciones, puede dar lugar a resultados extremadamente imprecisos. Un cajero y un farmacéutico de venta al por menor tendrán aptitudes comunes, por ejemplo, habilidades de atención al cliente, pero sus aptitudes clave, a saber, sus conocimientos especializados y sus competencias, difieren enormemente. Por lo tanto, incluso si todas las demás aptitudes enumeradas coinciden, sería completamente absurdo sugerir a un cajero para un puesto de farmacéutico. El contexto es esencial, y por lo tanto, uno de los tipos clave de información generada por nuestra ontología de empleo y habilidades.

Además, a diferencia de otras ontologías de habilidades en el mercado, JANZZon! distingue entre niveles de habilidades y contextos. Por ejemplo, el nivel de habilidades requerido en un puesto júnior no es el mismo que para un especialista sénior, y el conjunto de habilidades de un director de proyecto en el desarrollo de aplicaciones no es idéntico al de un director de proyecto en diseño de interiores. Estas diferencias se representan en nuestra ontología de empleo y habilidades JANZZon! y son uno de los factores que impulsan la extraordinaria precisión de nuestras herramientas de matching de empleos y profesiones.

Echa un vistazo a nuestro vídeo sobre la ontología de JANZZ

¿Por qué no nos limitamos a las bibliotecas de habilidades y taxonomías?

Las bibliotecas de habilidades o de empleos, en las que todavía confían muchos proveedores de tecnología, están construidas principalmente por expertos (a menudo psicólogos) que analizan y clasifican las habilidades y los niveles de habilidades relacionados con las categorías o funciones de los empleos. Estos métodos son laboriosos y limitados, y a menudo se centran en las habilidades interfuncionales o en un número limitado de habilidades técnicas específicas del trabajo. Además, en el mundo laboral, que cambia rápidamente, estas bibliotecas casi siempre quedan obsoletas en cuanto se completan.

Sin embargo, la cuestión clave de estas bibliotecas es que no existe un perfil de aptitudes estándar para una ocupación determinada. Esto significa que los resultados de la búsqueda y matching basados en las bibliotecas de habilidades son, en el mejor de los casos, poco satisfactorios. Por otro lado, con la ontología de habilidades adecuada, se obtiene una base de datos completa y continuamente actualizada que proporciona la base para una tecnología que «cambia las expectativas del usuario en cuanto a la relevancia de las búsquedas de empleo, el matching de los candidatos con los puestos de trabajo y la recomendación del contenido de aprendizaje».[3]

La principal ventaja de una ontología de habilidades con respecto a las bibliotecas de habilidades o las taxonomías es que vincula sinónimos así como habilidades similares y que guardan relación. Esto mejora considerablemente la búsqueda y el matching al traducir a un idioma común el vocabulario diverso de los diferentes implicados, las ofertas de empleo y los perfiles de los candidatos, así como al contextualizar los términos de búsqueda. Como resultado, los enfoques clásicos basados en palabras clave pueden sustituirse por la búsqueda semántica, en la que el sistema entiende el significado de los términos de búsqueda en lugar de comparar obstinadamente cadenas de caracteres.[4] Por ejemplo, al introducir el término CEO, el sistema basado en la ontología excluirá resultados como «Asistente del CEO». O, al introducir el término «Mecánico», sugerirá términos más precisos como «Mecánico de automóviles» o «Mecánico de barcos». De esta forma, los mejores perfiles para el trabajo pueden distinguirse con mucha más precisión, sin que candidatos inadecuados supongan un obstáculo o sin peligro de que los mejores candidatos salgan del campo de visión.

Además, nuestros sistemas basados en la ontología pueden reconocer las habilidades implícitas en ocupaciones que van desde «pintor de signos» hasta «director de proyectos de ciberseguridad» y utilizar estas habilidades para proporcionar resultados más satisfactorios – no sólo de los puestos y candidatos, sino también en la elaboración de perfiles, análisis de brechas y la trayectoria profesional. El conocimiento contextual almacenado en nuestra ontología de habilidades es también clave para nuestro parser de empleos y currículums de alto rendimiento.

Soluciones pioneras en tecnología GHC

La mayoría de las aplicaciones de GHC basadas en ontología que existen actualmente en el mercado siguen siendo bastante rudimentarias y no hay una solución única para todos los casos. En su lugar, se necesita una combinación de modelos y enfoques. Aquí en JANZZ.technology, ya tenemos una ontología de habilidades bien establecida, así como una tecnología altamente precisa para la búsqueda y matching semántico, análisis de brechas, perfiles, y análisis de empleos y currículums. Sin embargo, estamos dispuestos a mejorar y ampliar continuamente nuestras soluciones y, por lo tanto, nos comprometemos muy activamente en I+D, desarrollando incesantemente tecnología pionera para hacer frente a nuevos desafíos. Nuestra misión es ayudar a mejorar la experiencia de l GHC mediante la provisión de soluciones eficientes y de alto rendimiento sin compromiso.

¿Y por qué estamos tan adelantados al ciclo de sobreexpectación de Gartner? Porque comenzamos en 2008, mucho antes de que nadie hablara de la IA y de las representaciones del conocimiento, mucho antes de que Google y los mercados se dieran cuenta de que las soluciones avanzadas de IA no serían posibles sin ontologías. Es por eso que actualmente contamos con varios años de ventaja.

Aproveche esta ventaja e integre nuestra ontología de empleo y de competencias en sus aplicaciones a través de nuestras sencillas API. Contáctenos en info@janzz.technology para saber cómo podemos transformar su experiencia con nuestras soluciones de vanguardia basadas en ontologías.

[1] Gartner Methodologies, «Gartner Hype Cycle» 2020. https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
[2] Para comprender mejor la diferencia fundamental entre ontologías y taxonomías, lea nuestro post:
https://janzz.technology/ontologia-y-taxonomia-no-son-sinonimos-comparemos-para-establecer-sus-diferencias/?lang=es
[3] Poitevin, H., «Hype Cycle for Human Capital Management Technology, 2020», Gartner. 2020.
[4] Para más información sobre este tema, solicite una copia de nuestro White Paper «Keyword vs. ontología based, semantic matching» vía email o a través del formulario de contacto.