JANZZ本体 – 赋能数据,实现智能应用

在过去的40年中,本体一直存在于人工智能(AI)的研究中。[1] 就像流行趋势总是来来去去一样,本体同样经历了起伏。本体在80年代被引入,并在90年代中期开始流行。在2000年机器学习(ML)出现之后,当时普遍的观点是,将来用计算机执行的任何任务(借助AI和ML)都可以用智能算法来解决。许多公司在这些算法上投入了大量资金,希望在人工智能方向取得新的突破。

随着AI和ML的飞速发展,特别是在卷积神经网络(CNN)出现之后,其核心技术-深度学习(DL)-在参数大小和计算复杂性方面迅猛发展。今天,一些最复杂的模型已达到数十亿参数的规模。 [2]

尽管如此,人们对当前主流的DL提出了担忧。以图像识别中的监督学习为例:用于训练AI模型的图像需要根据目标对象的位置和轮廓手动识别,以使模型能够在比较不同标记结果的数据后,找到图像之间的隐含模式特征。如果我们回想婴儿时代的学习方式,我们人类无需这种指导便可以轻松地识别和分类不同的对象。 [2]

尽管DL方法取得了长足的进步,能够从训练数据中提取知识。但是,这种知识无法被明确解释,因为所谓的“黑匣子”训练无法揭示模型内隐藏的复杂关系。当面对新问题时,当前的DL模型无法将其获得的知识有效地用于解决新挑战。 [2]

关于大数据及其相关的隐私问题同样值得担忧。此外,当前的DL方法基于海量数据,不适用于生成少量数据的行业,例如医学和人力资源中的某些领域。这种情况要求AI系统具有推理和判断的能力,目前只有在特定领域才能成功。 [3]

其实,在某些领域已经存在许多强大的本体,例如金融业业务本体(FIBO)以及用于医疗保健,地理或职业的众多本体。当前学界普遍认为,整合知识和DL是进一步扩大DL有效性的重要思路。因此,本体以及诸如知识图谱或知识表示之类的许多相似研究重新成为人们关注的焦点。

在2008年JANZZ.technology便开始构建其本体-JANZZon!,远远早于科技巨头Google发明并普及 “知识图谱”一词。 JANZZ本体一直由具有不同背景的领域专家构建(例如知识产权法,流体动力学,汽车维修,心脏直视手术或教育和职业系统等领域)。

如今,JANZZon!是职业数据领域中最大的多语言百科知识表示。其数据重点关注于工作,工作分类,软硬件技能,培训/资格等。其存储的节点和关系数超过3.5亿!

由数据驱动和专家咨询分类法集成,JANZZon!涵盖了Nesta的英国技能分类法,ESCO,O * Net,ISCO-08,GB / T 6556-2015,DISCO II等。目前,有9种语言(德语,英语,法语,意大利语,西班牙语,葡萄牙语,荷兰语,阿拉伯语和挪威语)全面涵盖职业,技能,专业,功能,教育等,我们正在努力于2020年实现同一水平的40种语言可供选择。

作为我们工作和技能匹配技术的核心,JANZZon!代表最底层的知识,其中所有实体都已在语义空间中进行了编码和向量化。因此,在搜索和匹配时,我们的技术可以真正理解一个概念及其语义含义,从而保证有意义的结果。

如果您想知道本体可以如何帮助您在人力资源和劳动力市场领域中增强数据能力并实现智能应用,请立即写信至 sales@janzz.technology

 

[1] ODSC. 2018. Where Ontologies End and Knowledge Graphs Begin. URL: https://medium.com/predict/where-ontologies-end-and-knowledge-graphs-begin-6fe0cdede1ed [2019.11.20]

[2] 李军. 2019. 深度学习: 新时代的炼金术. URL : https://www.ftchinese.com/story/001084827?page=1&archive [2019.11.20]

[3] 蔡芳芳. 2019. 清华自然语言处理科学家孙茂松:深度学习碰壁之后,我们还能做什么? URL: https://www.infoq.cn/article/OvhfhpPChTLpsMgrf43N [2019.11.20]

人工智能在人力资源管理中的潜力

毫无疑问,人工智能(AI)将改变世界。它正在深刻地变革着诸如制造业,金融科技,医疗保健,汽车等众多行业,并在经济上推动巨大价值。但是,相比财务和市场部门从业者在AI技术使用中取得的巨大成功,人力资源从业者(HR)常常感到困惑:为什么同样的技术到他们这里就不太管用了呢?

Prasanna Tambe,Peter Cappelli和Valery Yakubovich在他们的研究中回答了这个问题:“在构建基于AI的系统时,HR部门自身存在系统性和结构性差异,使得AI技术运用变得更加困难。” [1] 由于大数据和AI运用方式在人力资源和就业领域的质量和解释力有限,目前大数据和人工智仍然很难在这些领域发挥更大的作用。为了更好地理解这一点,我们需要了解人力资源管理(HRM)中基于数据科学的AI问题。

从数据科学层面看,人力资源AI实践面临三大挑战:首先,在衡量整个员工的生命周期中,缺乏一致和连贯的HR数据管理流程。例如,在确定“聘用哪位候选人”或选择“提拔哪位候选人”时,HR部门需要对决定性的标准和技能,以及候选人最终被录用或晋升的原因进行一致的检查和记录。

其二,人力资源管理数据生成受限。与市场营销、财务等能大量生成数据且易于采集的领域不同,人力资源管理中的数据采集在数量和质量上仍然面临着巨大的挑战。此外,在许多情况下,HRM的数据仍然是非结构化的,如纸质的、excel或pdf格式的,这是计算机难以处理的。

最后一个挑战来自与数据处理相关的道德问题。 由于人力资源决策的结果会对员工的职业生涯产生严重的影响,因此这当中的公平性和透明度极为重要。员工对仅仅基于某些数据驱动算法结果的接受度又如何? 特斯拉的Morgan Hampton曾提出过一个很好的观点:“招聘应尽可能自动化,录用应保持人性化(Recruitment should be automated as much as possible, hiring should remain human)。”

结合以上几点,为了在人力资源管理中发挥AI的最大功效,HR经理人需要从以下几点入手:第一,人力资源经理需要创建一个适应于数字化和AI技术的HR流程。当前,AI技术只是集成到单独的HR任务中,如在招聘和人才获取,薪资管理和绩效管理,如何在人力资源实践中形成一个数据生成闭环协助AI的发展?或许以员工为中心的数据生成和管理模式不失为一种新的尝试。

在具体环节上,人力资源经理通常只保留他们感兴趣的简历,而把那些淘汰的简历扔掉。这样导致了单一维度的分析和结论[1] 。所有正反面标准都应该进行数据收集,并最终进行评估,以促进大数据模型和人工智能在人力资源场景的发展。

此外,数据生成方式应该是可持续的。例如,有些人工智能应用程序可以预测哪些员工即将辞职,有些应用甚至从员工的社交媒体或电子邮件中跟踪数据点[2]。如果员工意识到这样一个系统,他们很可能会改变自己的行为,故意产生误导性的数据。

去年,亚马逊人工智能招聘工具对女性的偏见证明了机器学习可以模仿人类的态度。然而,性别并不是造成歧视的唯一原因。年龄、国籍或种族等其它因素也可能产生负面影响,使公司无法进行包容性和多样化的招聘。人力资源经理应仔细收集具有代表性的数据样本,并寻找可解释的人工智能解决方案。

当前,在整个人力资源实践中还未能生成一套数据采集标准。这意味着人力资源经理必须与公司内部的IT部门或外部的人工智能供应商合作,确定要跟踪哪些数据以及如何测量这些数据,以便在公司内建立人工智能的最佳实践。

在JANZZ.technology,我们相信收集和构建数据是创建智能数据的基石。我们的解析工具从纸张、excel或pdf中提取正确的实体,确保从一开始就进行公平的端到端数据处理。您想知道更多关于我们的解析器的信息吗?我们如何帮助您完成智能化升级的旅程?请马上与我们联系sales@janzz.technology

[1]Prasanna Tambe, Peter Cappellli and Valery Yakubovich. 2019. Artificial intelligence in human resources management: Challenges and a path forward. URL:https://www.researchgate.net/profile/Peter_Cappelli/publication/328798021_Artificial_Intelligence_in_Human_Resources_Management_Challenges_and_a_Path_Forward/links/5c5edc7f299bf1d14cb7dc5f/Artificial-Intelligence-in-Human-Resources-Management-Challenges-and-a-Path-Forward.pdf [2019.10.20]

[2] Samantha Mclaren. 2019. Here’s how IBM predicts 95% of its turnover using data. URL:https://business.linkedin.com/talent-solutions/blog/artificial-intelligence/2019/IBM-predicts-95-percent-of-turnover-using-AI-and-data[2019.10.20]

职场中的两性隔离

职场上男女隔离的部分原因是男女对特定职业的偏好和能力不同所造成的。传统上,女性集中从事如教学,护理和其它与护理相关的服务工种。相比而言,大多数男性活跃于所谓的“蓝领”工作,包括建筑,设备操作和维修。

此外,由于女性占主导地位的职业报酬较低,相比之下,女性更倾向于进入男性占主导的职业。这从#MeToo运动和妇女配额制等活动中便能窥见一斑。但是这样的进步在男性缺乏的职业中却止步不前,比如早期育儿工作。

早在1996年,欧盟委员会儿童关怀组织便设定了战略目标,意在到2020年将男性在儿童保育中的就业率提高到20%。如今距离截止日期只有几个月的时间,但是该领域男性的就业率却仍远远低于目标人数。

在德国,目前每100名学龄前儿童保育员中只有6名是男性。在英国和爱尔兰,这一数字甚至不到100人中的2人。挪威在两性平等问题上被认为是全球的表率,其比例最高,每100名男性中就有9名从事早期儿童保育工作。但是,这个比例同样也远低于20%的目标。在欧洲以外的地区情况相似,美国和澳大利亚从事幼儿保育工作的男性人数分别只占4%和2%。

有趣的是,在德国斯图加特的一个儿童保育中心(通常指四岁一下儿童的托管机构),情况却大不一样。这个中心雇佣的12个保育员中,有一半为男性;此外,该中心还不断地收到更多男性保育员的工作申请。为什么这个中心对男性育儿工作者如此具有吸引力呢?

该中心的创始人,同样从事过儿童保育的Nöth先生解释说,与传统的有固定小组的育儿中心不同,在他的中心孩子们有七种不同的活动小组,包括绘画、手工和体操。每一个小组活动都在一个单独的专用房间进行,孩子们每天都可以参加不同的小组活动。Nöth先生指出,这种运作方式为儿童保育员提供了创造性工作的机会,例如单独设计和开展活动。这种高度自主性的工作方式正是吸引男性保育员的原因之一。〔1〕

工作场所中的性别陈规定型观念仍然存在,比如早期育儿工作就应该是由女性从事。这样的观念给男性育儿工作人员造成了敌对的环境。此外,当大多数同事都是女性时,也增加了男性保育员工作中的孤立感,难以在工作中建立友情和发展社交活动,这可能会促使这个行业中为数不多的男性退出。这一点也得到了斯图加特这个儿童保育中心的男性育儿工作者的认同,他们认为在相对较多的男性同事环境中工作,会感觉到更舒服。

这样的特殊案例或许给我们提供了一些启示,来突破当前任然存在严重两性隔离的行业。例如,我们需要为传统上特定性别主导的角色创建新的工作职能。这一点已经在某些蓝领职业中体现出来了。随着新技术的出现,一些工种正由“体力活儿”向涉及机器运用的复杂职能转变,从而吸引了越来越多的女性加入该领域。

另外一点是要集中那少部分的男性或者女性。在工作场所中,如果某一性别处于极少数群体,他们很有可能会有不愉快的工作经历。统计数据表明,对于女性而言,在男性雇员超过90%的职业中,这种不愉快感急剧增加。

在挪威,教育部门积极引导男性进入某几个特定师范学院,从而集中男性学生在一起避免某一学院只有一个男性学生的情况。这样一些小小的举措鼓励了更多的男性学生申请师范专业,并为早期保育培养了更多男性人才。

近十年来,JANZZ.technology一直在观察全球劳动力市场并与参与多个不同劳动力市场的合作项目。我们独特的工作匹配解决方案仅使用对工作匹配真正重要的参数,如职能,技能,专长,经验等,避免了由年龄,性别或出身等因素带来的偏见。要了解有关我们解决方案的更多信息,请立即写信至 sales@janzz.technology

 

 

 

[1] Philipp Awounou. 2019. Kann Mann machen. URL: https://www.spiegel.de/karriere/kita-in-stuttgart-wo-das-halbe-personal-maennlich-ist-a-1281251.html [2019.10.03]

 

JANZZ.technology提供可解释人工智能(Explainable AI)

在过去的十年里,由于大量生成的数据和不断增强的计算能力,机器学习(Machine Learning),特别是深度学习系统,取得了前所未有的突破。然而,盲目追求机器学习的成功,造成了我们过度容忍人工智能(AI)应用开发的过程。如今,越来越多的自治系统(autonomous system)导致机器缺乏解释其行为的能力。

由于大多数人工智能技术都是由私营公司开发,这些公司为了自身利益会确保他们的数据处理是保密的。此外,许多公司在人工智能技术中使用复杂的神经网络,他们甚至无法解释某些结果是如何得出的。

当然,如果这样的系统错误地预测了某些消费行为,那么后果可能不大。然而,如果这样的误判发生在自主车辆、医疗诊断、政策决策或者我们的工作匹配中,那又会怎样呢?相信在这样的情况下,我们很难盲目地信赖一个人工智能系统的决策过程。

今年年初,经济合作与发展组织(经合组织)提出了人工智能原则,旨在促进创新和可信赖的人工智能。在经合组织提出的五大原则中,其中一个原则更是明确指出,“围绕人工智能系统应该有透明度和负责任的披露,以确保人们了解基于人工智能的结果,并能够挑战他们。”[1]

可解释人工智能(Explainable AI)作为解决人工智能系统中“黑箱”决策问题的一种手段,最近在机器学习领域越来越多的被提及。如上所述,目前用于机器学习的大多数算法在如何和为什么做出决策方面都无法被人类理解。因此,很难诊断这些决策是否存在错误和偏见。这其中尤其包括深度学习神经网络方法的大多数流行算法。[2]

因此,包括经合组织在内的许多监管方都不断敦促企业增加可解释人工智能。在欧洲生效的《通用数据保护条例》规定,欧盟人民有权对任何算法决定进行“人工审查”。在美国,保险法促使公司对他们的决定做出详细说明,比如为什么拒绝为某一人群投保,或者为什么只向少数人群收取更高的保费。[3]

然而,当前的可解释人工智能也存在两个主要亟待解决的问题。首先,正确界定可解释人工智能的概念是一个挑战。用户应该意识到他们可以获取的关于人工智能应用知识的局限性。因为,如果企业别无选择,必须提供详细的解释,知识产权作为一个独特的卖点(Unique Selling Proposition)将会消失。[4]

第二个问题是绩效性和可解释性之间的权衡。我们是否需要对某些机器任务进行标准化,并对某些行业进行监管,迫使他们寻求透明的人工智能解决方案?即使这意味着扼杀了这些行业的开发潜力?

在JANZZ.technology,我们致力于向用户解释我们匹配候选人和职位的过程。我们独特的匹配软件抛开诸如性别、年龄或国籍等次要参数,使用真正重要的数据来寻找完美的候选人,比如技能、教育/培训、专业、经验等。

我们独特的匹配系统不单单给出一个最终匹配值,而是分解了所有评判标准,如功能、技能、语言和入职时间等。让用户对匹配结果有更充分的理解,并为员工再培训和技能提升提供参照。您想知道更多关于JANZZ.technology如何应用可解释人工智能解决方案的吗?请立即写信至 sales@janzz.technology

 

[1] OECD. 2019. OECD Principles on AI. URL :https://www.oecd.org/going-digital/ai/principles/ [2019.9.17].

[2] Ron Schmelzer. 2019. Understanding Explainable AI. URL: https://www.forbes.com/sites/cognitiveworld/2019/07/23/understanding-explainable-ai/#6b4882fa7c9e[2019.9.17].

[3] Jeremy Kahn. 2018. Artificial Intelligence Has Some Explaining to Do. URL: https://www.bloomberg.com/news/articles/2018-12-12/artificial-intelligence-has-some-explaining-to-do[2019.9.17].

[4] Rudina Seseri. 2018. The problem with ‘explainable AI’. URL: https://techcrunch.com/2018/06/14/the-problem-with-explainable-ai/[2019.9.17].

 

 

 

 

在中国工业中心城市重庆,智能技术升级正在全面展开

第二届中国国际智能产业博览会(智博会)于2019年8月26日至29日在中国重庆成功举办。中华人民共和国主席习近平向智博会发来了贺信。中国最具新闻价值的商界领袖齐聚重庆,分享了他们对智能技术的看法,并为智能产业提出了建议。

这其中包括了阿里巴巴集团创始人马云、腾讯董事长兼CEO马化腾、百度联合创始人、董事长兼CEO李彦宏、联想集团董事长兼CEO杨元庆等。去年,重庆被宣布成为中国国际智能产业博览会这一高标准活动的永久会址。然而,这座城市凭借什么成为中国智能和智能产业的先锋呢?

中国的战略性发展

20世纪末21世纪初期,中国共产党中央委员会,国务院贯彻邓小平关于中国现代化建设“两个大局”思想做出了实施西部发开发的战略。作为西部唯一的直辖市,重庆迎来了历史性发展机遇,加快了直辖市建设的步伐。

2013年,中国政府将“一带一路倡议”作为一项全球战略,重庆再次迎来了发展的黄金机遇。处在“丝绸之路经济带”和“长江经济带”的交汇处,“一带一路”战略加速了重庆向东向西的开放。在踏上发展快车实现了经济高速增长后,重庆经济遭遇到下行压力。为了新一轮的增长,2018年以来,重庆实施了以大数据智能化为引领的创新驱动发展战略行动计划。

完整的产业链

重庆做出这一选择显然是经过深思熟虑的。重庆在中国信息化与工业化融合中发挥了重要作用。它是中国西部老工业基地之一,也是重要的工业制造基地。此外,重庆的工业门类齐全,除了传统的制造业以外,还包括电子信息和通信行业。

它是中国汽车制造大城之一,是长安福特,力帆汽车等大型汽车制造商的所在地,全球每三台笔记本电脑就一台产自重庆。良好的工业基础,为未来的智能制造或智能创造,包括人工智能打下了一个好的基础。

成熟的数字平台

经过几年的努力,重庆市已经建成了全市统一的政务信息资源共享交换平台。(国家-市-区)三级政府信息资源共享系统将国家平台和38个区平台连接在一起。同时,重庆率先完成直辖市数据共享,实现部门信息孤岛的跨越,加快了数据聚合。去年,重庆已实现80个部门200多个政府服务、城市规划、城市治理等应用。

完善的网络基础设施

重庆是中国通信网络架构中10个一级节点之一,这极大地提升了重庆作为西部互联网枢纽的地位和增强了重庆网络基础设施的支撑能力。重庆也成为西部地区三大运营商(移动、联通、电信)共同启动5G试点的两大城市之一。目前,重庆移动已开通两个5G基站。今年内,计划在主城区建设和开通50个5G基站。

本届智博会发布了人工智能、大数据、自动驾驶汽车、无人机、虚拟技术等领域的多项最新技术、产品和应用。参展企业包括阿里巴巴、谷歌、浪潮、华为和百度等数家重量级企业。在来自28个国家和地区的843家企业中,JANZZ.technology也有幸成为其中一员参加了今年重庆智博会。我们相信,未来中国将成为智能技术领域的领军者,我们希望能寻找到潜在的中国合作伙伴,帮助我们打开通往中国市场的大门。我们仍然可以回忆起在智博会期间遇到的无数孩童,透过他们好奇的眼睛,我们看到了这座城市智慧的未来。

瑞士的下一代工匠在哪里?

根据创新SBFI和国家教育、研究和创新秘书处(SERI)出版的最新报告《Nahtstellenbarometers——义务教育后的教育决定》,最受瑞士青少年青睐的职业培训分别是商业雇员,医疗保健助理和信息技术员,而工匠职业特别是手工匠职业相对排名靠后。与男孩相比,渴望接受职业培训的女孩比例减少了15%,报告显示没有一个女孩有兴趣选择电工,汽车修理或技术技师等职业当学徒工。〔1〕

目前瑞士有42778名手工匠人缺口。这一数字是由一家求职网站公布,该网站还指出,技工职位是近年来广告招聘最多的职位类别之一:当前,广告招聘的技工职位总数为198097个。从事建筑和住宅服务的公司都在到处寻找熟练的技术工人。温特图尔(瑞士苏黎世州第二大城市)一家电气和安全工程公司的总经理感叹,“在目前的市场形势下,要寻找人员填补我们的空缺并不容易。”〔2〕

对学术路线的兴趣日益浓厚

是什么原因导致瑞士工匠短缺?日益受青睐的学术路线被认为是其中一个促成因素。瑞士青少年在12至14岁之间必须决定是继续升入高中还是进入职业培训(也被称为双轨系统)。双轨系统在瑞士具有悠久的传统,并深受家长、青少年和社会的广泛认可。它不仅极大地降低了瑞士青年人的失业率,同时也为瑞士各个技能行业输出了高质量的技术工人。

然而,瑞士社会越来越多的家长,特别是具有移民背景的家长认为职业培训质量低,与拥有四年制大学学位的学生相比,进入职业学校的学生能力较差或抱负较低。许多国际公司也更倾向于录用拥有学士学位的毕业生,这增加了年轻人选择职业培训的压力,迫使他们中的许多人对进行职业培训犹豫不决。

最近,青少年选择升入高中的人数有所增加,特别是在瑞士的法语和意大利语区。这对职业培训中的一些冷门行业提出了挑战。 国家教育、研究和创新秘书处在一份声明中指出,“在整个瑞士,学术路线获得了更多的青睐,对普通教育的渴望比去年更强”[3]。

技工行业的误解

在媒体宣传中,我们似乎认为只有与计算机科学相关的职业才有前途,技术工人特别是手工技术工人将会被自动化和机器人所取代。但在某些情况下,机器还没有达到足够的机敏和拥有精细的运动技能来与人类的手竞争。例如,要研磨精度在100毫米以内的轴承,需要多年的实践,只有经验丰富的熟练技工才能做到这一点,有时除了经验之外,还需要凭借直觉,这一点机器很难拥有。

人们往往错误地认为,技术性行业提供的上升机会很小,薪水也很低。但现实情况是,大公司中有许多高级管理人员,以及瑞士著名的政府官员,都是从学徒工一路打拼到如今的成就。今天我们特别需要高素质的工匠,高级技工的薪水也不低于大学里的教授。

除此之外,这份工作还提供了成为企业家的机会。不幸的是,如今有许多企业家打算将他们非常成功且利润丰厚的生意交给下一代,但却苦于找不到愿意接班的人。除了年轻人缺乏相关行业经验外,据各种调查报告显示,Y/Millennials一代(出生于1980-1995年)正在寻求更安全、更灵活的工作,他们更喜欢在大公司拿着稳定的薪水,而不愿承担创业的责任。

年轻人变得太懒了吗?

除了瑞士之外,德国,比利时,奥地利和美国等许多其他国家也面临着类似的工匠短缺问题。不可否认的是,许多技术工的工作性质十分艰苦。例如,面包店的学徒必须在凌晨2点就开始工作,这不是一件轻松的事情,现在许多年轻人不愿意接受这样的工作。

瑞士中央职业教育与培训委员会主席认为,当下年轻人对计算机和机器人的关注度过高,相比而言,技工行业显得黯然失色[1]。然而,数字化不应被视为阻碍年轻人选择职业培训的障碍。事实上,职业培训应该大力推广数字化,并提升数字化工匠的形象,以一种现代的,不那么传统的阳刚形象,吸引更多的年轻人,甚至是年轻女孩。

合作努力

与其它经济部门一样,数字化也已进入了技工行业,并通过提高生产力和降低业务成本对该行业产生着深远影响。例如,通过使用数据分析,屋顶工人现在可以使用3D扫描仪测量房屋,以订购所需屋顶瓦片的确切数量。

建筑信息模型(BIM)能实现建筑信息的整合,从建筑物的设计,建造和运营到项目整个生命周期的结束。把许多不同的信息集成到利益相关者的三维模型信息数据库中。当然还有其它许多的例子,包括虚拟现实,无人机,3D地图和3D打印。

尽管各个技工行业协会在提高人们对工匠重要性的认识方面作出了巨大努力,但现实却令人失望。来自瑞士建筑协会的官员呼吁伯尔尼联邦政府说:“重要的是,政治家不要发出错误的信号。重要的是,政府不仅要促进中等和大学教育,还要促进职业培训“。

的确,政府应该更加积极努力地推动职业培训,缩小接受职业培训的青年男女比例,鼓励更多年轻女性走进传统的男性学徒工行业。如有必要,还需要考虑从瑞士以外的其他国家引进年轻人来弥补某些职业培训的人才缺失。

在数字化的当下,AI和大数据可以为承包商,专门从事技工人才的猎头公司以及计划促进职业培训的政府机构做些什么?如何使用数字平台助您找到您所需技工人才?现在写信给 sales@janzz.technology 让我们用JANZZ.technology的智能数据帮助您。

 

[1] gfs.bern. 2019. Nahtstellenbarometer 2019. URL: https://cockpit.gfsbern.ch/de/cockpit/nahtstellenbarometer-2019/ [2019.07.25]

[2] Ulrich Rotzinger and Julia Fritsche. 2019. In der Schweiz fehlen 42’778 Handwerker. URL: https://www.blick.ch/news/wirtschaft/in-der-schweiz-fehlen-42778-handwerker-schreiner-sanitaere-und-elektroinstallateure-verzweifelt-gesucht-id15399544.html?fbclid=IwAR0TU2tUpeSmljN23gLwK5S09DOpvURnFdNqBNoR6nRSfLo_Z3ChojKrVYE [2019.07.25]

[3] Isobel Leybold-Johnson. 2019. What careers did Switzerland’s students choose this year? URL: https://www.swissinfo.ch/eng/continuing-education_what-careers-did-switzerland-s-students-choose-this-year-/45035674 [2019.07.25]

挪威NAV电视台报道了挪威新推出的数字求职平台的成功案例

Janzz.technology是挪威劳工福利管理局(NAV)新工作匹配平台语义搜索和匹配引擎背后的技术提供商。

NAV的数字求职平台arbeidsplassen.no现已推出,并得到求职者和雇主的认可。NAV希望求职者通过该平台能更容易地找到新的职位。

Yusuf在一周内成为了某呼叫中心的一名员工。对他来说,高中毕业后休学一年也就意味着简历上出现了空白,当他再次申请工作时,这就成了个问题。通过NAV,他开始了工作培训,这将积极帮助他打开通往劳动力市场的大门。Arbeidsplassen.no为Yusurf提供了这样一个平台。他接受了一次面试,并在接下来的一周开始担任呼叫中心的代理。对于招聘公司“Maskineriet”而言,NAV的网站使其更容易找到新员工。招聘人员通过NAV的简历数据库进行搜索,寻找应聘者并进一步建立连系。然后,候选人可受雇于一个固定职位。

挪威企业联合会(Enterprise Federation of Norway)的董事总经理对求职平台表示赞赏。Arbeidspassen.no被认为是非常有价值的,因为它能更有效地匹配公司的需求和优秀的候选人。NAV投资数字化的决定帮助公司简化了其招聘流程。

在求职者方面,简历服务有了显著的提高,通过使用导航平台,求职者可以更方便地找到合适的工作。现在,应聘者可以定义和定位求职概况,并同时适用于更广泛的可用职位。雇主对候选人匹配过程和arbeidsplassen.no平台都表现出积极的反馈——这最终对NAV很重要。

更多信息请访问nrk.no: https://tv.nrk.no/serie/distriktsnyheter-oestfold/201907/dkos99070519/avspiller

中等技术工人受到数字化的冲击最大

根据在经合组织国家的就业观察,虽然从长期看来低技能工人受到数字化转型的影响将会最大(除了一些结合手动灵活性和可变环境的工种),但目前中等技术工作的机会正在大量缩减。

如果我们过去只是在嘴上说说数字化和自动化将如何改变我们的工作,未来的工作以及是否机器人将在某些领域取代人类等热门话题,如今,我们能真切感受到数字化和自动化带来的影响,而且,这样的感受将会变得越来越明显。

由于数字化引发的能源革命,能源业中的许多公司都轻视了这场革命的速度,如今面临着产能过剩的问题。在瑞士,通用电气(GE)刚刚宣布裁员,导致Baden和Birr的450名员工失业。为了与国际在线供应商竞争,瑞士最大的零售公司之一Migros不得不进行转型。今年 6月,这家公司解雇了Gossau的90名员工。经济合作与发展组织(OECD)预测了瑞士员工的危机:70万个工作岗位与“高风险自动化”有关。 [1] 要知道这只是整个全球劳动力市场其中一个小部分。

当前很难说明数字化带来的影响,因为它对就业市场既有正面影响,也有负面冲击。然而,统计证据表明,数字化会影响工作,收入和工资的分配。 [2] 凭借解决繁琐问题,创造性思维和复杂沟通等技能,高技能工人往往从数字化中受益最多,因为他们所具备的技能与数字化起到相辅相成的作用。因此,我们可以观察到大多数经合组织国家的高技能工作在增加。同样,低技术工作岗位的比例也在不断上升,而唯有中等技术工作岗位的比例在下降。 [3]

为什么中等技术工人面临的风险最大而在数字化下处于不利地位?苏黎世联邦理工学院(ETH)创新经济学教授Martin Wörter解释说,“办公室或工业生产中的重复活动可以更容易地通过计算机或机器人取代。”瑞士联邦就业统计数据支持了他这一说法。在20年内,上班族人数减少了15万人,而工匠人数只减少了9万人。相反,学术职业的数量增加了47万。 [1]

然而,对于公司而言,简单地裁掉技术被淘汰的工人并将其替换为符合所需技能的员工是短视的做法。由于技能要求变化比以往任何时候都快,即使公司今天可以不惜代价找到新的工人,明天呢?解决这类问题的唯一方法是启用现有员工的重新培训。进一步的培训可以在很大程度上减少裁员并使整个公司受益。正如人力资源管理教授兼卢塞恩大学校长Bruno Staffelbach所说:“公司特定的专业知识在未来将变得更加重要。但是,员工只能从在公司工作中获得这些技能。 “ [1]

庆幸的是许多公司已经意识到这一点并启动了有效的技能发展项目,但正如我们在以前的文章中多次谈到的那样,劳动力重新培训需要一种涉及个人,公司,行业以及政府的生态系统方法。根据世界经济论坛的计算,在美国,45%的高风险工人可以通过企业合作的方式开展集体式重新培训。如果与政府的努力相结合,能够进行重新培训的工人比例可能会增加到77%。 [4]

近十年来,JANZZ.technology一直在观察全球劳动力市场并在多个劳动力市场中参与合作。我们凭借专业知识,为客户提供正确的数据,以应对就业市场的一般挑战。我们的最新产品–劳动力市场仪表板,使用实时数据来建立重要的劳动力市场指数,包括最需要的技能,搜索次数最多的位置或男女用工比率等。如果您想了解更多有关JANZZ.technology的专业知识,请马上联系我们 sales@janzz.technology

[1] Albert Steck. 2019.Digitalisierung gefährdet Jobs von Mittelqualifizierten am stärksten. URL: https://nzzas.nzz.ch/wirtschaft/digitalisierung-gefaehrdet-jobs-von-mittelqualifizierten-am-staerksten-ld.1492570#swglogin [2019.07.02]

[2] OECD. 2015. OECD skills outlook 2015: youth, skills and employability, OECD Publishing, Paris, URL: https://doi.org/10.1787/9789264234178-en [2019.07.02]

[3] OECD. 2019. OECD skills outlook 2019: thriving in a digital world, OECD Publishing, Paris, URL: https://doi.org/10.1787/df80bc12-en [2019.07.02]

[4] Borge Brende. 2019. We need a reskilling revolution. Here’s how to make it happen. URL: https://www.weforum.org/agenda/2019/04/skills-jobs-investing-in-people-inclusive-growth/ [2019.07.02]

数字时代背景下职业分类系统的出路

人类早已开始观察并记录社会中的经济活动。据记载,在唐朝期间(618年-907年)就已经出现“三十六行”的描述,从而有了我们常说的“三十六行,行行出状元”。而今天,我们的工作正在以如此快的速度发生变化,再想要统计出日常生活中各行各业的具体数字,变得几乎是一件不可能的事情。由于工作岗位正在发生变化,旧的工作消失和新的工作出现,编制职业统计记录也变得越来越复杂。过去只有一个“经理”,如今有五花八门的经理:PI经理,IT经理,项目经理,代际合作经理等等。

因此,除了出于统计目的而罗列出所有职业名称之外,职业描述,技能和经验要求,教育水平以及更多方面与职业相关的信息也加入进了数据库。这样,我们不仅可以更好地了解当今的工作,还可以开发更复杂的系统来执行更有意义的任务,例如,行职业规划,工作搜索,识别趋势或指导政策设计等等。

美国的分类系统

美国商务部于1977年发布了标准职业分类(SOC)。当时,美国政府的许多项目开始收集统计数据,联邦政府需要一个统一的职业分类系统。 在SOC中,每个工作下面只有简短的描述和说明性示例,除了统计目的,其它意义不大。SOC根据所从事的工作类型进行分类,但很少从特定职位所需的技能和教育水平上进行分类[1]。最新版本的SOC于2018年发布。

在线数据库O * Net是对SOC的扩展,由美国劳工部就业和培训管理局在20世纪90年代中期创建。求职者,学生,企业研究人员和劳动力开发专业人员可以自由地访问和下载O * Net数据库的信息。与SOC相比,它是一个更复杂的系统,具有更详细的信息,如任务,技术技能,知识,能力,教育水平和工作方式。因此,在指导性上更有意义。

欧洲的分类系统

国际标准职业分类(ISCO)由国际劳工局(ILO)维护和管理。 ISCO是职业相关数据的主要国际分类,用于国际交流,报告和比较。它还为希望进一步改进自己国家的职业分类或直接套用ISCO-08的国家和地区提供参照。例如奥地利的Ö-ISCO,挪威的Styrk-08,哥斯达黎加的COCR-2011,加拿大的NOC 2016以及亚洲大多数国家职业分类都是以ISCO为模板。

2017年7月,欧盟启动了第一版欧洲多语种技能,能力,资格和职业分类(ESCO),该分类也是基于ISCO-08。 ESCO旨在通过欧盟官方24种语言建立对职业,技能,知识和资格的共同理解,使雇主,员工和教育机构能够更好地了解需求和要求。正如欧洲委员会主席Jean-Claude Juncker所说的那样,在促进人员自由流动下,ESCO可以帮助弥补不同成员国之间的技能差距和缓解失业率[2]。

行业分类系统

行业分类或行业分类法按行业和生产流程,产品或工作岗位对公司进行分组。它们为国家和国际统计机构提供服务,以便对经济状况进行分析,比较和总结。众所周知的行业分类包括NAICS,ISIC,GICS,NAF 2015和MUPCS。

此外,从职业分类向技能分类的转变也愈发成为趋势。这种转变有助于提高分类系统在职业指导方面的作用以及在指导新技能培训方面的作用。英国的创新基金会Nesta建立了英国首个数据驱动技能分类标准(UK skills taxonomy)。它可以衡量国家的技能供需,以防止技能短缺。社交媒体平台LinkedIn也为其用户构建了技能分类。

中国的分类系统

中国于1995年开始创建职业分类。并在1999年发布了第一版的《中华人民共和国职业分类大典》。目前正在使用的是2015年的最新版本,旨在跟上快速变化的就业部门。该大典参照ISCO,对职业进行了4个层级的划分,共收录1838个职业。

相比在同一时期创建的O * Net,中国职业分类大典仍有很大的上升空间。具体而言,如提高可访问性,加强持续数据更新能力以及增强对学生和求职者的指导性等方面[3]。其中,加强持续更新数据能力的问题并不是中国职业分类大典所特有的。许多其它分类系统同样面临这个难题,包括O * Net。

职业分类系统的新出路

创建传统的专家咨询分类标准既耗时又昂贵,而且最重要的是,它缺乏适应世界不断快速变化的工作环境的能力。因此,我们急需一种新的解决方案。这种新的方案要能够不断为劳动力市场提供信息,使求职者,学生,教育提供者,雇主和政策制定者能够对变化保持警惕,并有能力做出反应。

通过数字化,基于数据的信息收集方法可以彻底改变分类系统的创建方式。在JANZZ.technology,我们已经在我们的本体/知识图谱中绘制了所有国际职业分类系统和其它系统。 (如果您想了解分类法和本体论之间的区别,请查看https://janzz.technology/ontology-and-taxonomy-stop-comparing-things-that-are-incomparable/)。

这种映射使JANZZ.technology能够分析庞大复杂的职业数据集,并使用智能和标准化的元数据对其进行注释,从而使得数据在基准测试,匹配或统计分析等进一步过程中具有可比性。我们的JANZZclassifier!适用于拥有大量(非标准化)职业相关数据(如职称,硬技能和软技能,特别是培训/资格)的个人和组织。它使您能够通过我们的API简单地运行您的数据,并返回更有意义的数据。

值得注意的是,我们使用来自用户,合作伙伴和劳动力市场的实时数据,不断更新我们的数据库。这是在数字时代开发分类系统的新方法。如果您想具体了解我们的本体/知识图谱可以如何帮助您,请立即写信给 sales@janzz.technology

 

[1] Jeffrey H. Greenhaus and Gerard A. Encyclopedia of career development.

[2] ESCO (2015). ESCO strategic framework. Vision, mission, position, added value and guiding principles. Brüssel.

[3] 李文东, 时勘. 2006. 美国国家标准职业分类系统的发展概况及对我国的启示. URL: https://www.docin.com/p-1479318301.html [2019.06.24]

 

 

NLP人才获取中的应用示例

JANZZ的本体/知识图谱 – JANZZon! 被视为人才获取中的自然语言处理应用示例,与其共同作为示例的还包括Google的Cloud Jobs API。 在Gartner的文章“人工智能和机器学习对人力资本管理的影响”中,它总结了人工智能和机器学习的应用是如何转型人力资源流程。 要阅读完整报告,请访问:https://www.gartner.com/en/documents/3778864/impacts-of-artificial-intelligence-and-machine-learning-