O potencial da inteligencia artificial na gestão de recursos humanos

A inteligência artificial (IA) é inquestionavelmente uma ferramenta poderosa. Seu valor econômico está aumentando tremendamente e transformando inúmeras indústrias, tais como manufatura, fintech, medicina e automobilística. Trabalhadores em finanças e marketing têm muito sucesso usando tecnologias de inteligência artificial, enquanto os profissionais de recursos humanos acham bastante difícil integrá-los em suas práticas diárias.

Prasanna Tambe, Peter Cappelli e Valery Yakubovich afirmam em sua pesquisa: “Há diferenças sistêmicas e estruturais para o RH que tornam mais difícil, quando você está construindo um sistema baseado em IA.” [1]. Devido ao fato de que a qualidade e o poder explicativo do big data e da IA são limitados, eles ainda são considerados não convencionais nas áreas de RH e empregabilidade. Para se ter uma melhor compreensão desta matéria, é necessário considerar os problemas da IA em termos de ciência de dados na gestão de recursos humanos (GRH).

Existem três desafios principais nas práticas de RH quando se trata de ciência dos dados. A primeira questão é a falta de consistência na medida dos processos de RH ao longo do ciclo de vida dos colaboradores. Por exemplo, ao determinar qual candidato contratar ou escolher quem promover, é crucial registrar e analisar consistentemente quais critérios e habilidades foram os fatores decisivos no processo de contratação anterior.

O segundo problema com as práticas de HR é a limitação dos conjuntos de dados produzidos na HRM. Ao contrário de algumas áreas tais como marketing e finanças, onde muitos dados são gerados e facilmente coletados, a coleta de dados na GRH enfrenta grandes desafios em termos de quantidade e qualidade. Além disso, os dados na GRH são muitas vezes não estruturados (em papel, no Excel ou no formato PDF) e, consequentemente, difíceis de serem processados por um computador.

A última dificuldade refere-se a questões éticas relacionadas com o tratamento de dados. Os resultados das decisões de RH podem ter um impacto significativo na carreira de alguém. Portanto, é imperativo pensar sobre como a justiça e a transparência podem ser alcançadas. Além disso, também é crucial saber como os funcionários reagem aos resultados que se baseiam exclusivamente em algoritmos baseados em dados. Como declarou Morgan Hampton, da Tesla, “o recrutamento deve ser automatizado tanto quanto possível, a contratação deve permanecer humana”.

Levando em consideração essas três problemáticas na busca de soluções de IA, os gestores de RH devem focar nos seguintes aspectos para utilizar a IA mais efetivamente. Primeiramente, os gestores de RH precisam criar um processo de RH adequado que esteja pronto tanto para a era digital quanto para a tecnologia de IA.

Atualmente, as tecnologias de IA estão separadas, por exemplo, no recrutamento e aquisição de talentos, gestão de folha de pagamento e transações de auto-atendimento. No entanto, carecem de um mecanismo para gerar dados que possam auxiliar todo o processo de IA nas práticas de RH.

Os gestores de RH freqüentemente mantêm apenas as aplicações em que estão interessados e não mantêm aquelas que são excluídas. Isto leva a uma análise e conclusão unidimensional [1]. Todos esses critérios devem ser reunidos na coleta de dados e, eventualmente, ser avaliados para facilitar o desenvolvimento de modelos de big data e processos de IA.

Além disso, é também imperativo gerar dados de forma sustentável. Por exemplo, existem aplicações de IA que podem prever quais trabalhadores estão prestes a deixar seus empregos, e alguns até rastreiam pontos de dados das mídias sociais ou e-mails dos funcionários [2]. Se os funcionários estivessem cientes de tal sistema, eles provavelmente mudariam seu comportamento e deliberadamente produziriam dados enganosos.

No ano passado a história sobre a ferramenta de IA de recrutamento da Amazon ser tendenciosa contra as mulheres foi a prova de que aprendisagem de máquinas pode imitar as atitudes humanas. Gênero, no entanto, não é o único aspecto que é motivo de discriminação. Outros, como idade, nacionalidade ou etnia, também podem ter um impacto negativo, impedindo as empresas de contratações inclusivas e diversas. Os gestores de RH devem recolher cuidadosamente amostras de dados que sejam representativas e procurar soluções de IA explicáveis. As complexas redes neurais na aprendizagem profunda estão longe de serem auto-explicativas.

Até hoje, os critérios de dados standard que os gestores de RH deveriam respeitar ao longo do ciclo de prática de RH ainda não existem. Isto significa que os gestores de RH têm de se juntar ao departamento interno de TI da sua empresa ou a fornecedores externos de IA para determinar quais os dados a rastrear e como avaliar esses dados, a fim de estabelecer as melhores práticas de IA nas suas empresas.

Na JANZZ.technology acreditamos que a coleta e estruturação de dados é fundamental para a criação de dados inteligentes. A nossa ferramenta de análise extrai as entidades certas de papel, Excel ou PDF, garantindo um processamento de dados justo e completo desde o início. Quer saber mais sobre o nosso parser e como podemos ajudá-lo na sua jornada de transformação de IA? Por favor, escreva agora para sales@janzz.technology

[1]Prasanna Tambe, Peter Cappellli and Valery Yakubovich. 2019. Artificial intelligence in human resources management: Challenges and a path forward. URL:https://www.researchgate.net/profile/Peter_Cappelli/publication/328798021_Artificial_Intelligence_in_Human_Resources_Management_Challenges_and_a_Path_Forward/links/5c5edc7f299bf1d14cb7dc5f/Artificial-Intelligence-in-Human-Resources-Management-Challenges-and-a-Path-Forward.pdf [2019.10.20]

[2] Samantha Mclaren. 2019. Here’s how IBM predicts 95% of its turnover using data. URL:https://business.linkedin.com/talent-solutions/blog/artificial-intelligence/2019/IBM-predicts-95-percent-of-turnover-using-AI-and-data[2019.10.20]

JANZZ.technology oferece IA (Inteligência Artificial) explicável

Ao longo da última década, graças à disponibilidade de grandes conjuntos de dados e ao poder de computação mais avançado, a aprendizagem de máquina (ML), especialmente os sistemas de aprendizagem profunda, realizaram uma melhoria significativa. No entanto, o sucesso dramático do ML nos cegou e nos levou a tolerar o processo de aplicação de Inteligência Artificial (IA). Devido a seus sistemas cada vez mais autônomos, as máquinas são atualmente incapazes de esclarecer seus usuários sobre suas decisões e ações.

Hoje em dia, a maioria das AIs são feitas por empresas privadas que se certificam de manter o seu processamento de dados em segredo. Além disso, muitas empresas empregam redes neuronais tão complexas em tecnologias de IA que não há nenhuma explicação fornecida sobre como elas obtêm certos resultados.

Tal sistema pode não ter grandes consequências quando, por exemplo, prevêem erroneamente o próximo destino de viagem dos seus clientes. Mas se tivesse um impacto nos veículos autónomos, nos diagnósticos médicos, no processo de decisão ao fazer uma apólice ou mesmo no trabalho de alguém? Seria difícil concordar cegamente com o processo de tomada de decisão de um sistema se as consequências fossem como tal.

No início deste ano, a Organização para a Cooperação e Desenvolvimento Econômico (OCDE) apresentou seus princípios sobre a IA com o objetivo de promover a inovação e a confiabilidade. Um dos cinco princípios complementares baseados em valores para a gestão responsável de uma IA confiável é que “deve haver transparência e divulgação responsável em torno dos sistemas de IA para garantir que as pessoas entendam os resultados baseados em IA e possam desafiá-los”. [1]

Explicáveis IA (XAI) tem surgido recentemente no campo da aprendizagem de máquina para abordar a questão de decisões “caixa preta” dos sistemas de IA. Atualmente, a maioria dos algoritmos usados para ML não pode ser compreendido pelos seres humanos em termos de como e por que uma decisão foi tomada, como mencionado acima. Do mesmo modo, estes são bastante difíceis de diagnosticar por erros e vieses. Este é especialmente o caso da maioria dos algoritmos populares em abordagens de redes neuronais de aprendizagem profunda. [2]

Consequentemente, numerosas partes regulatórias, incluindo a OCDE, estão pedindo às empresas mais XAI. O GDPR (General Data Protection Regulation – Regulamento Geral de Proteção de Dados), que entrou em vigor na Europa proporcionou às pessoas na UE um “direito a uma revisão humana” de qualquer decisão algorítmica que possa potencialmente ter um impacto sobre elas. Nos EUA, as leis dos seguros obrigam as empresas a desenvolver as suas próprias decisões, tais como rejeitar a cobertura de um determinado grupo de pessoas ou cobrar apenas algumas com prémios mais elevados. [3]

No entanto, existem dois problemas principais associados ao XAI. Em primeiro lugar, definir corretamente o conceito de XAI mostra ser bastante desafiador. O que os usuários devem estar cientes e quais devem ser as limitações de seu conhecimento, também precisa ser esclarecido. Se as empresas não tivessem outra escolha senão fornecer explicações detalhadas para tudo, então a propriedade intelectual como uma proposta de venda única (USP) provavelmente desapareceria. [4]

O segundo fator problemático é a avaliação do trade-off em algumas tarefas entre desempenho e explicabilidade. Precisamos regular e padronizar para certas tarefas ou indústrias e forçá-las a buscar soluções de IA integradas de transparência, mesmo que isso signifique estabelecer uma carga muito alta para a potencialidade dessas indústrias?

Na JANZZ.technology tentamos explicar da melhor forma aos nossos usuários como combinamos candidatos e posições. O nosso software de matching exclusivo exclui parâmetros irrelevantes como gênero, idade ou nacionalidade e apenas compara habilidades, educação/treinamento, especializações, experiências, etc. Ele só usa aspectos que realmente importam para encontrar os candidatos perfeitos.

Além disso, em vez de dar uma pontuação de correspondência, o nosso sistema único de matching divide todos os critérios, tais como funções, habilidades, idiomas, disponibilidade e assim por diante. Isso permite que os usuários tenham uma melhor compreensão dos resultados e estabelece a base para a requalificação e aprimoramento da força de trabalho analisada. Quer saber mais sobre como nós da JANZZ.technology aplicamos soluções de IA explicáveis? Entre em contato conosco através do e-mail sales@janzz.technology

 

[1] OECD. 2019. OECD Principles on AI. URL :https://www.oecd.org/going-digital/ai/principles/ [2019.9.17].

[2] Ron Schmelzer. 2019. Understanding Explainable AI. URL: https://www.forbes.com/sites/cognitiveworld/2019/07/23/understanding-explainable-ai/#6b4882fa7c9e[2019.9.17].

[3] Jeremy Kahn. 2018. Artificial Intelligence Has Some Explaining to Do. URL: https://www.bloomberg.com/news/articles/2018-12-12/artificial-intelligence-has-some-explaining-to-do[2019.9.17].

[4] Rudina Seseri. 2018. The problem with ‘explainable AI’. URL: https://techcrunch.com/2018/06/14/the-problem-with-explainable-ai/[2019.9.17].

 

 

 

 

Como a Índia potencializa seus dividendos demográficos

Enquanto a maioria dos países desenvolvidos do mundo luta contra o envelhecimento da população, aumentando a idade da reforma e acolhendo os migrantes, outros países estão preocupados em como integrar um grande número de jovens no mercado de trabalho. A série “Deloitte’s Voice of Asia” (A voz da Deloitte na Ásia) relatou que muitos países na Ásia testemunharam um crescimento constante na população em idade ativa, com cada vez mais jovens homens e mulheres entrando no mercado de trabalho a cada ano. A Índia é o primeiro país da lista.

De acordo com os números do World Economic Forum (Fórum Económico Mundial), metade da população da Índia tem menos de 25 anos e um quarto tem menos de 14 anos. Levando em consideração que é o segundo país mais populoso do mundo, com 1,3 bilhão de cidadãos, a Índia representa um quinto da juventude mundial. Como a maioria dos economistas previram, a Índia se beneficiará do bônus demográfico e terá uma economia em rápido crescimento.

Para realizar a vantagem demográfica, a Índia precisará acelerar significativamente a criação de empregos e o investimento em capital humano para acompanhar o crescimento da população em idade ativa. Atualmente, há 17 milhões de pessoas que entram anualmente no mercado de trabalho e apenas 5,5 milhões de empregos criados [1]. Num levantamento efectuado pela OCDE, mais de 30% dos jovens indianos entre os 15 e os 29 anos não estão empregados nem em educação ou formação (NEETs) [2].

Isabelle Joumard, economista sénior e chefe do gabinete da Índia na OCDE, explicou: ” NEETs inclui todos os jovens deixados de fora do emprego remunerado e sistemas formais de educação e formação. São NEET porque não há empregos de qualidade suficientes a serem criados no sistema, e porque eles têm poucos incentivos ou enfrentam demasiados constrangimentos para estarem nos sistemas de educação e formação” [2].

Olhando de um ponto de vista global, as taxas de desemprego juvenil permanecem acima dos 20% em algumas economias europeias. O Médio Oriente e o Norte de África têm tido taxas de desemprego juvenil próximas dos 30% e as coisas continuaram a piorar nos últimos anos. No entanto, os jovens que encontraram trabalho têm muitas vezes de se contentar com empregos que não satisfazem as suas expectativas [3] e 16,7% dos jovens trabalhadores em economias e desenvolvimentos emergentes vivem em extrema pobreza [4].

Porquê as oportunidades de emprego são especialmente escassas nos países menos desenvolvidos? O desenvolvimento insuficiente de políticas, a infraestrutura precária e os canais de financiamento limitados estão entre as muitas razões para a carência de empregos. De acordo com os resultados do e4e “education for employment initiative” (inuciativa de educação para o emprego) conduzida pela “International Finance Corporation” (Corporação Financiera International) e o “Islamic Development Bank” (Banco Islâmico de desenvolvimento) o desajuste entre a educação e a demanda do mercado de trabalho é um grande obstáculo à criação de empregos [5].

Como apontado por vários estudos, desenvolver um ecossistema de habilidades voltado para a empregabilidade é fundamental para alavancar o potencial demográfico da Índia. Rajastão, o sétimo estado mais populoso da Índia, tem uma população de jovens com menos de 25 anos, que representa quase 55% de toda a população do estado. De 2012 a 2018, a taxa de desemprego aumentou de 4,5% para 7,7%. O problema do desemprego no estado do Rajastão é agravado por questões como a falta de formadores de qualidade e o não alinhamento da educação e das qualificações [6].

Para resolver estes problemas, o Estado vem intensificando continuamente a criação de infraestruturas da educação. Em 2004, Rajastão tornou-se o primeiro Estado do país a implementar uma missão de competências com o objectivo de reduzir a diferença entre a oferta e a procura de mão-de-obra qualificada e, consequentemente, aumentar a taxa de emprego. Para melhorar ainda mais a qualidade da qualificação, universidades de competência foram fundadas, um projeto pioneiro no país [6].

Em Himachal Pradesh, localizado no norte da Índia, uma grande parte do emprego está na agricultura. Mais de dois terços da sua mão-de-obra são trabalhadores por conta própria, e a quantidade de empregos remunerados permanece muito baixa. Em 2018, o “Asian Development Bank (ADB)” (Banco Asiático de Desenvolvimento (ADB)) assinou um empréstimo com o governo indiano para impulsionar as “technical and vocational education and training (TVET)” (instituições de ensino e formação técnica e profissional (TVET)) e para ampliar os ecossistemas de qualificação em Himachal Pradesh. Os planos para este projeto incluem transformar 11 bolsas de emprego em modelos de centros de carreira, modernizar equipamentos de treinamento, empregar um sistema de informação de treinamento e criar um melhor acesso à TVET de qualidade relevante para o mercado de trabalho dos jovens do estado, a fim de prepará-los para as mudanças nas necessidades do mercado de trabalho. [7]

JANZZ.technology ajuda os governos a população activa no mercado de trabalho, a través do uso de tecnologia baseada em IA (Inteligência Artificial). Em colaboração com o “Ministerio de Trabajo, Empleo y Seguridad Social (MTESS)” e a “Dirección General de Empleo (DGE)”, implementamos com sucesso no Paraguai a plataforma ParaEmpleo, uma solução tecnológica de correspndência de empregos. A colaboração entre o Paraguay e a JANZZ.technology, se enquadra no âmbito do Programa de Apoio à Inserção Laboral, apoiado pelo “Banco Interamericano de Desarrollo (BID)” (Banco Interamericano de Desenvolvimento) desde de 2011.  A representante do BID no Paraguay, María Florencia Attademo-Hirt, falou muito bem sobre a tecnologia da JANZZ, dizendo: ” Ferramentas inovadoras como esta são o que vai melhorar a vida dos paraguaios, além do Mercosul e do contexto regional ” [8]. O uso inovador da tecnologia é o caminho correto e eficiente para resolver muitos problemas atuais do mercado de trabalho. Se você, como organização governamental, está buscando soluções para para combater as questões do mercado de trabalho em seu país, por favor não hesite em nos contactar via sales@janzz.technology, onde estaremos encantados em fornecer mais informações, adaptadas à suas necesidades específicas.

 

 

 

[1] NASSCOM, FICCI and EY. 2017. Future of jobs in India – A 2022 perspective. URL: https://www.ey.com/Publication/vwLUAssets/ey-future-of-jobs-in-india/%24FILE/ey-future-of-jobs-in-india.pdf [2019.04.30]

[2] OECD. 2017. OECD Economic Surveys India. URL: https://www.oecd.org/eco/surveys/INDIA-2017-OECD-economic-survey-overview.pdf [2019.04.30]

[3] Guy Ryder. 2016. 3 ways we can tackle youth employment. URL: https://www.weforum.org/agenda/2016/01/3-ways-we-can-tackle-youth-employment/ [2019.04.30]

[4] ILO. 2017. Global employment trends for youth 2007. URL: https://www.ilo.org/wcmsp5/groups/public/—dgreports/—dcomm/—publ/documents/publication/wcms_598675.pdf [2019.04.30]

[5] Lars Thunell. 2012. How do we create more jobs for young people? URL: https://www.weforum.org/agenda/2012/01/how-do-we-create-more-jobs-for-the-youth/ [2019.04.30]

[6] Pwc and FICCI. 2019. Fast forward: relevant skills for a buoyant Indian economy. URL: http://ficci.in/spdocument/23062/FICCI-PwC-rajasthan-report.pdf [2019.04.30]

[7] ADB. 2018. ADB, India sign $80 million loan to help boost youth employability in Himachal. URL: https://www.adb.org/news/adb-india-sign-80-million-loan-help-boost-youth-employability-himachal [2019.04.30]

[8] IDB. 2019. Algorithms that get you a job in Paraguay. URL: https://www.iadb.org/en/improvinglives/algorithms-get-you-job-paraguay [2019.04.30]

 

Ontologia e taxonomia: não são sinónimos. Vamos comparar para estabelecer as suas diferenças

A palavra “ontologia” pode ser abstrata para muitas pessoas. A sua origem vem de um sonho de Tim Berners-Lee de inventar a World Wide Web. Este sonho incluía que a Web fosse capaz de definir a chamada “web semântica”, analisando todos os dados da rede, incluindo conteúdo, links e transações entre computadores e pessoas. Na web semântica, o Resource Description Framework (RDF) e Web Ontology Language (OWL) foram estabelecidos como formatos padrão para compartilhar e integrar dados e conhecimentos, este último na forma de ricos esquemas conceituais chamados ontologias [1.] Neste artigo, vamos usar a palavra ontologia como uma definição de metodologia de trabalho, no entanto, vale ressaltar que, no mundo atual das tecnologias de informação e comunicação, o termo “gráfico de conhecimento” é amplamente utilizado como sinônimo de ontologia.

Porque uma ontologia é importante

Falando em Inteligência Artificial (IA), os termos “Big Data”, “aprendizagem automática” e “aprendizagem profunda” estão lentamente substituindo o uso do termo “IA”. No entanto, para citar Adrian Bowles: “não há inteligência artificial sem a representação do conhecimento”. Em outras palavras, a IA requer elementos de engenharia do conhecimento, arquitetura da informação e uma quantidade significativa de trabalho humano para realizar seu “trabalho neural mágico”. Alexander Wissner-Gross argumenta que talvez a coisa mais importante seja reconhecer que são os conjuntos de dados inteligentes e não os algoritmos que provavelmente serão o fator principal limitante no desenvolvimento da inteligência artificial no nível humano.

             “Não há inteligência artificial sem a representação do conhecimento.”

Uma ontologia é uma representação estruturada e formal do conhecimento relacionado a uma determinada área. Isso é necessário porque, ao contrário dos humanos, a IA não pode ser diretamente baseada em noções humanas pré-estabelecidas sobre o uso correto de um termo. O que uma ontologia pode fazer, entretanto, é “aprender” sobre o significado semântico de um termo através das ligações entre os conceitos de seu sistema. Já existem ontologias poderosas em campos específicos, como a Ontologia da Indústria Financeira Empresarial (FIBO), bem como numerosas ontologias para a área da saúde, geografia ou setor de emprego.

Outra parte importante da IA é o raciocínio semântico. Além de identificar transações potencialmente fraudulentas, determinar a intenção dos usuários baseando-se no histórico do navegador e fazendo recomendações de produtos, a IA também pode fazer o seguinte: executar tarefas que requerem raciocínio explícito, baseado em conhecimento geral e específico do assunto, como compreender artigos de notícias, preparar comida ou comprar um carro. Esse tipo de tarefa requer informações que não fazem parte dos dados de entrada e devem ser combinadas dinamicamente com o conhecimento. Este tipo de raciocínio informático só pode ser alcançado com ontologias e a forma como o conhecimento que elas incluem é estruturado. [2]

Taxonomia e ontologia são fundamentalmente diferentes

A ontologia é muitas vezes confundida com a taxonomia.  Além do fato de que ambos termos pertencem aos campos de IA, web semântica e engenharia de sistemas, não há muito mais que os defina como sinônimos. Classificações taxonómicas como O*NET (Rede de Informação Ocupacional) e ESCO (European Skills/Competences, qualifications and Occupations) simplesmente não podem ser comparadas com ontologias.  As primeiras fornecem uma abordagem muito mais simples para a classificação de conceitos, uma vez que têm uma estrutura hierárquica e utilizam apenas relações pai-filho entre termos, sem uma ligação adicional mais sofisticada. As ontologias, por outro lado, são uma forma muito mais complexa de categorização. Metaforicamente falando, uma taxonomia seria equivalente a uma árvore, enquanto uma ontologia seria para uma floresta.

Aqui um exemplo: O termo “golfe” pode aparecer em várias taxonomias.  Pode estar localizado debaixo de uma árvore de ” Atividades humanas” (atividades humanas -> atividades de lazer -> esportes -> golfe).  Ele também pode ser encontrado em uma taxonomia relacionada com o vestuário (vestuário -> vestuário casual/activo -> vestuário desportivo -> vestuário de golfe e acessórios). Ele poderia até mesmo aparecer em algo muito diferente, por exemplo, uma taxonomia de carro (carro -> Alemanha -> VW -> Golf). Em uma ontologia, cada uma dessas taxonomias pode ser considerada como uma árvore, cujos galhos se conectam com o nó “golfe” de outros galhos, de outras árvores. [3]

Explicadas de outra forma, as taxonomias representam um conjunto de tópicos, que têm uma relação cujo propósito é definir “isto é…”, enquanto as ontologias desenvolvem conexões muito mais complexas, permitindo relações que reconhecem que “isto” “tem…” e “usa…”. 4] Portanto, se voltarmos ao exemplo de classificação anterior, as taxonomias não têm a capacidade de comparar conceitos de crianças.

Na classificação internacional ESCO, quase todos os médicos especialistas estão agrupados sob o título: Profissionais médicos especializados. Se analisarmos este caso, torna-se evidente que um enfermeiro especializado em anestesia e um médico anestesiologista têm conhecimentos e habilidades em comum, mas não podem se aplicar ao mesmo cargo. Além disso, os conjuntos de habilidades especializadas são simplesmente agrupados em listas gerais, sem nenhum link para as ocupações especializadas correspondentes. Por que isso acontece? Uma razão é que as classificações são utilizadas principalmente para fins estatísticos. Deste ponto de vista, não há necessidade de classificar todos os médicos especialistas de acordo com as suas competências e formação específicas. Então, de acordo com as taxonomias, as especializações só podem ser reconhecidas pelo cargo e é necessário recorrer a outras fontes para entender melhor seu conteúdo específico.

A construção de uma ontologia que contém: ocupações, capacidades, competências e formação, torna possível o reconhecimento automático das diferenças e semelhanças entre cargos. Por exemplo: Pediatras e neonatologistas têm empregos semelhantes, uma vez que ambos se dedicam ao cuidado da saúde dos recém-nascidos. Com a abordagem de modelagem ontológica, é possível determinar que uma pediatra tem uma percentagem muito alta de habilidades semelhantes às de um neonatologista. No entanto, pediatras só podem assumir o trabalho do neonatologista após receber treinamento adicional. Toda esta informação pode ser representada numa ontologia, através das inter-relações entre conceitos. Estas relações excedem em muito a capacidade de uma simples taxonomia.

Ontologias possibilitam a combinação de conjuntos de dados

Quando se trata de combinar, por exemplo, currículos com ofertas de emprego, não há melhor sistema para isso do que a utilização de uma ontologia. Muito frequentemente, formas simples de correspondência, com base em palavras-chave, ou métodos difusos de aprendizagem automática, são utilizados, o que significa que muitas semelhanças não são detectadas, portanto, não são obtidos resultados correspondentes. Elementos que levam a essa falta de resultados são, por exemplo, variações de palavras-chave introduzidas, sinônimos e frases alternativas. Para obter uma correspondência eficiente, é importante comparar a semântica (o significado subjacente) de dois elementos, em vez da redacção do texto. É aqui que as ontologias entram em jogo. Baseiam-se num modelo semântico, capaz de detectar os significados e semelhanças subjacentes entre CVs e descrições de funções.

A técnica de combinação ontológica é uma técnica fundamental que tem aplicação em muitas áreas, como a combinação de ontologias. Em domínios com regras muito complexas e interações complexas entre regras, não há substituto para ontologias. Isto é mostrado, por exemplo, quando se considera a integração de domínios muito diferentes. Suponha que existem duas ontologias separadas, uma ontologia meteorológica e uma ontologia geográfica. A criação de uma terceira ontologia que integre e tire partido do conteúdo das duas é uma proposta gerível que forneceria informações valiosas para a avaliação dos riscos de navegação ou para o domínio dos seguros. [5]

O verdadeiro valor das ontologias

O sistema semântico baseia-se em representações explícitas, e compreensíveis para o ser humano, de conceitos, relações e regras para desenvolver o conhecimento de uma determinada área. É impossível confiar unicamente nos programadores para construir tal sistema, baseado na aprendizagem automática, uma vez que eles não têm o conhecimento necessário para definir as relações entre os conceitos de cada domínio específico. Portanto, o conhecimento de uma área específica deve vir de especialistas nessa área e a integração de conhecimentos especializados em diferentes áreas é necessária (por exemplo, direitos de propriedade intelectual, dinâmica de fluidos, conserto de automóveis, cirurgia de coração aberto, ou sistemas educacionais e profissionais). Este processo é crucial para criar uma representação integral do conhecimento.

Para a ontologia multilingue da JANZZ, as capacidades são um ponto-chave. Em muitos casos, a tradução literal de um conceito para muitas línguas não é possível, no entanto, porque a Suíça é um país pequeno e multicultural, todos os nossos curadores de ontologia são fluentes em pelo menos duas línguas, e alguns até mais de quatro (incluindo chinês e árabe). Isto dá-nos uma grande vantagem, o que nos permite garantir a qualidade e consistência dos conteúdos em diferentes idiomas.

Há cerca de uma década, a JANZZ começou a construir a sua ontologia sobre várias taxonomias de ocupação, nomeadamente: CITP-08, ESCO e muitas classificações específicas de países. Ao longo dos anos, a JANZZ incorporou em sua ontologia milhares de novas profissões e funções (por exemplo, pesquisador de mercado, data minerador, especialista em geração milenar, gerente de mídia social, gerente comunitário, etc.) que não existiam anteriormente em nenhuma das taxonomias conhecidas. Além de novos títulos de emprego, a ontologia é constantemente atualizada com a inclusão de novos termos em todos os campos: habilidades, educação, experiência e especializações. O fato de que nossa ontologia é capaz de reconhecer semelhanças e ambiguidades entre empregos e outras áreas relevantes no campo da colocação de trabalho torna-o a ferramenta perfeita para empresas de RH e serviços públicos de emprego. Hoje, a ontologia JANZZ é de longe a maior, mais complexa e completa ontologia de dados de colocação de trabalho do mundo.

Felizmente, alguns governos e empresas escolheram o caminho certo e agora se beneficiam amplamente de nossa tecnologia de última geração. Para mais informação sobre a ontologia da JANZZ, por favor entre em contato conosco: sales@janzz.technology. Agradecemos desde já o seu interesse e teremos todo o gosto em responder a todas as suas perguntas.

 

 

 

[1] Ian Horrocks. 2008. Ontologies and the Semantic Web. URL: http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2008/Horr08a.pdf [2019.02.01 ]

[2] Larry Lefkowitz. 2018. Semantic Reasoning: The (Almost) Forgotten Half of AI. URL: https://aibusiness.com/semantic-reasoning-ai/ [2019.02.01]

[3] New Idea Engineering. 2018. What’s the difference between Taxonomies and Ontologies? URL: http://www.ideaeng.com/taxonomies-ontologies-0602 [2019.02.01]

[4] Daniel Tunkelang. 2017. Taxonomies and Ontologies. URL: https://queryunderstanding.com/taxonomies-and-ontologies-8e4812a79cb2 [2019.02.01]

[5] Nathan Winant. 2014. What are the advantages of semantic reasoning over machine learning? URL: https://www.quora.com/What-are-the-advantages-of-semantic-reasoning-over-machine-learning [2019.02.01 ]